Release 5 Preview #1

This page is part of the FHIR Specification (v4.2.0: R5 Preview #1). The current version which supercedes this version is 5.0.0. For a full list of available versions, see the Directory of published versions

Clinical Decision Support Work GroupMaturity Level: 0Standards Status: Trial Use
OrderedDistribution
Standards StatusThis element has a standards status of "Draft"
Element IdOrderedDistribution
Definition

An ordered list (distribution) of statistics.

Cardinality0..*
TypeBackboneType
Invariants
Defined on this element
odd-4Rule The cardinality of interval SHALL equal the value of numberOfIntervalsinterval.count() = numberOfIntervals
OrderedDistribution.description
Element IdOrderedDistribution.description
Definition

A description of the content and value of the statistic.

Cardinality0..1
Typestring
OrderedDistribution.note
Element IdOrderedDistribution.note
Definition

Footnotes and/or explanatory notes.

Cardinality0..*
TypeAnnotation
OrderedDistribution.numberOfIntervals
Element IdOrderedDistribution.numberOfIntervals
Definition

Number of intervals in an array, eg 4 for quartiles.

Cardinality1..1
Typeinteger
Summarytrue
OrderedDistribution.bottomOfFirstInterval
Element IdOrderedDistribution.bottomOfFirstInterval
Definition

Bottom of first interval.

Cardinality0..1
TypeQuantity
Invariants
Defined on this element
odd-1Rule If minimum is not empty, all instances of interval.maximum must either be absent or > minimum..true
OrderedDistribution.interval
Element IdOrderedDistribution.interval
Definition

Interval.

Cardinality1..*
Summarytrue
Invariants
Defined on this element
odd-2Rule For every interval n, if n.maximum is not empty then, for every interval k, if k.rankOrder < n.rankOrder then k.maximum must be < n.maximum or empty.true
OrderedDistribution.interval.rankOrder
Element IdOrderedDistribution.interval.rankOrder
Definition

Relative order of interval.

Cardinality1..1
Typeinteger
Summarytrue
Invariants
Defined on this element
odd-3Rule Now two intervals in the same OrderedDistribution can have the same rankOrdertrue
odd-5Rule The rankOrder value SHALL be an integer from 1 to k where k is the value of numberOfIntervalstrue
OrderedDistribution.interval.intervalStatistic
Element IdOrderedDistribution.interval.intervalStatistic
Definition

Values and parameters for a single statistic related to the interval.

Cardinality0..*
TypeStatistic
OrderedDistribution.topOfInterval
Element IdOrderedDistribution.topOfInterval
Definition

Singular value of the statistic at the upper bound of the interval.

Cardinality0..1
TypeQuantity