This page is part of the FHIR Specification (v3.3.0: R4 Ballot 2). The current version which supercedes this version is 5.0.0. For a full list of available versions, see the Directory of published versions . Page versions: R5 R4B R4 R3 R2
FHIR Infrastructure Work Group | Maturity Level: 5 | Ballot Status: Normative |
Normative Candidate Note: This page is candidate normative content for R4 in the Infrastructure Package. Once normative, it will lose it's Maturity Level, and breaking changes will no longer be made.
This exchange specification is based on generally agreed common requirements across healthcare - covering many jurisdictions, domains, and different functional approaches. It is common for specific implementations to have valid requirements that are not part of these agreed common requirements. Incorporating all valid requirements would make this specification very cumbersome and difficult to implement. Instead, this specification expects that additional valid requirements will be implemented as extensions.
As such, extensibility is a fundamental part of the design of this specification. Every element in a resource can have extension child elements to represent additional information that is not part of the basic definition of the resource. Applications should not reject resources merely because they contain extensions, though they may need to reject resources because of the specific contents of the extensions.
Note that, unlike in many other specifications, there can be no stigma associated with the use of extensions by any application, project, or standard - regardless of the institution or jurisdiction that uses or defines the extensions. The use of extensions is what allows the FHIR specification to retain a core simplicity for everyone.
To make the use of extensions safe and manageable, there is strict governance applied to the definition and use of extensions. Although any implementer can define and use extensions, there is a set of requirements that must be met as part of their use and definition.
Every element in a resource or data type includes an optional "extension" child element that may be present any number of times. This is the content model of the extension as it appears in each resource:
Structure
UML Diagram (Legend)
XML Template
<extension|modifierExtension xmlns="http://hl7.org/fhir" url="identifies the meaning of the extension (uri)"> <!-- from Element: extension --> <value[x]><!-- 0..1 * Value of extension --></value[x]> </extension|modifierExtension>
JSON Template
{ // from Element: extension "url" : "<uri>", // R! identifies the meaning of the extension // value[x]: Value of extension. One of these 23: "valueInteger" : <integer> "valueDecimal" : <decimal> "valueDateTime" : "<dateTime>" "valueDate" : "<date>" "valueInstant" : "<instant>" "valueString" : "<string>" "valueUri" : "<uri>" "valueBoolean" : <boolean> "valueCode" : "<code>" "valueBase64Binary" : "<base64Binary>" "valueCoding" : { Coding } "valueCodeableConcept" : { CodeableConcept } "valueAttachment" : { Attachment } "valueIdentifier" : { Identifier } "valueQuantity" : { Quantity } "valueRange" : { Range } "valuePeriod" : { Period } "valueRatio" : { Ratio } "valueHumanName" : { HumanName } "valueAddress" : { Address } "valueContactPoint" : { ContactPoint } "valueSchedule" : { Schedule } "valueReference" : { Reference } }
Turtle Template
@prefix fhir: <http://hl7.org/fhir/> . [ # from Element: Element.extension fhir:Extension.url [ uri ]; # 1..1 identifies the meaning of the extension # Extension.value[x] : 0..1 Value of extension. One of these 48 fhir:Extension.valueBase64Binary [ base64Binary ] fhir:Extension.valueBoolean [ boolean ] fhir:Extension.valueCanonical [ canonical ] fhir:Extension.valueCode [ code ] fhir:Extension.valueDate [ date ] fhir:Extension.valueDateTime [ dateTime ] fhir:Extension.valueDecimal [ decimal ] fhir:Extension.valueId [ id ] fhir:Extension.valueInstant [ instant ] fhir:Extension.valueInteger [ integer ] fhir:Extension.valueMarkdown [ markdown ] fhir:Extension.valueOid [ oid ] fhir:Extension.valuePositiveInt [ positiveInt ] fhir:Extension.valueString [ string ] fhir:Extension.valueTime [ time ] fhir:Extension.valueUnsignedInt [ unsignedInt ] fhir:Extension.valueUri [ uri ] fhir:Extension.valueUrl [ url ] fhir:Extension.valueUuid [ uuid ] fhir:Extension.valueAddress [ Address ] fhir:Extension.valueAge [ Age ] fhir:Extension.valueAnnotation [ Annotation ] fhir:Extension.valueAttachment [ Attachment ] fhir:Extension.valueCodeableConcept [ CodeableConcept ] fhir:Extension.valueCoding [ Coding ] fhir:Extension.valueContactPoint [ ContactPoint ] fhir:Extension.valueCount [ Count ] fhir:Extension.valueDistance [ Distance ] fhir:Extension.valueDuration [ Duration ] fhir:Extension.valueHumanName [ HumanName ] fhir:Extension.valueIdentifier [ Identifier ] fhir:Extension.valueMoney [ Money ] fhir:Extension.valuePeriod [ Period ] fhir:Extension.valueQuantity [ Quantity ] fhir:Extension.valueRange [ Range ] fhir:Extension.valueRatio [ Ratio ] fhir:Extension.valueReference [ Reference ] fhir:Extension.valueSampledData [ SampledData ] fhir:Extension.valueSignature [ Signature ] fhir:Extension.valueTiming [ Timing ] fhir:Extension.valueParameterDefinition [ ParameterDefinition ] fhir:Extension.valueDataRequirement [ DataRequirement ] fhir:Extension.valueRelatedArtifact [ RelatedArtifact ] fhir:Extension.valueContactDetail [ ContactDetail ] fhir:Extension.valueContributor [ Contributor ] fhir:Extension.valueTriggerDefinition [ TriggerDefinition ] fhir:Extension.valueUsageContext [ UsageContext ] fhir:Extension.valueDosage [ Dosage ] ]
Changes since DSTU2
Extension | |
Extension.value[x] |
|
See the Full Difference for further information
XML Template
<extension|modifierExtension xmlns="http://hl7.org/fhir" url="identifies the meaning of the extension (uri)"> <!-- from Element: extension --> <value[x]><!-- 0..1 * Value of extension --></value[x]> </extension|modifierExtension>
JSON Template
{ // from Element: extension "url" : "<uri>", // R! identifies the meaning of the extension // value[x]: Value of extension. One of these 23: "valueInteger" : <integer> "valueDecimal" : <decimal> "valueDateTime" : "<dateTime>" "valueDate" : "<date>" "valueInstant" : "<instant>" "valueString" : "<string>" "valueUri" : "<uri>" "valueBoolean" : <boolean> "valueCode" : "<code>" "valueBase64Binary" : "<base64Binary>" "valueCoding" : { Coding } "valueCodeableConcept" : { CodeableConcept } "valueAttachment" : { Attachment } "valueIdentifier" : { Identifier } "valueQuantity" : { Quantity } "valueRange" : { Range } "valuePeriod" : { Period } "valueRatio" : { Ratio } "valueHumanName" : { HumanName } "valueAddress" : { Address } "valueContactPoint" : { ContactPoint } "valueSchedule" : { Schedule } "valueReference" : { Reference } }
Turtle Template
@prefix fhir: <http://hl7.org/fhir/> . [ # from Element: Element.extension fhir:Extension.url [ uri ]; # 1..1 identifies the meaning of the extension # Extension.value[x] : 0..1 Value of extension. One of these 48 fhir:Extension.valueBase64Binary [ base64Binary ] fhir:Extension.valueBoolean [ boolean ] fhir:Extension.valueCanonical [ canonical ] fhir:Extension.valueCode [ code ] fhir:Extension.valueDate [ date ] fhir:Extension.valueDateTime [ dateTime ] fhir:Extension.valueDecimal [ decimal ] fhir:Extension.valueId [ id ] fhir:Extension.valueInstant [ instant ] fhir:Extension.valueInteger [ integer ] fhir:Extension.valueMarkdown [ markdown ] fhir:Extension.valueOid [ oid ] fhir:Extension.valuePositiveInt [ positiveInt ] fhir:Extension.valueString [ string ] fhir:Extension.valueTime [ time ] fhir:Extension.valueUnsignedInt [ unsignedInt ] fhir:Extension.valueUri [ uri ] fhir:Extension.valueUrl [ url ] fhir:Extension.valueUuid [ uuid ] fhir:Extension.valueAddress [ Address ] fhir:Extension.valueAge [ Age ] fhir:Extension.valueAnnotation [ Annotation ] fhir:Extension.valueAttachment [ Attachment ] fhir:Extension.valueCodeableConcept [ CodeableConcept ] fhir:Extension.valueCoding [ Coding ] fhir:Extension.valueContactPoint [ ContactPoint ] fhir:Extension.valueCount [ Count ] fhir:Extension.valueDistance [ Distance ] fhir:Extension.valueDuration [ Duration ] fhir:Extension.valueHumanName [ HumanName ] fhir:Extension.valueIdentifier [ Identifier ] fhir:Extension.valueMoney [ Money ] fhir:Extension.valuePeriod [ Period ] fhir:Extension.valueQuantity [ Quantity ] fhir:Extension.valueRange [ Range ] fhir:Extension.valueRatio [ Ratio ] fhir:Extension.valueReference [ Reference ] fhir:Extension.valueSampledData [ SampledData ] fhir:Extension.valueSignature [ Signature ] fhir:Extension.valueTiming [ Timing ] fhir:Extension.valueParameterDefinition [ ParameterDefinition ] fhir:Extension.valueDataRequirement [ DataRequirement ] fhir:Extension.valueRelatedArtifact [ RelatedArtifact ] fhir:Extension.valueContactDetail [ ContactDetail ] fhir:Extension.valueContributor [ Contributor ] fhir:Extension.valueTriggerDefinition [ TriggerDefinition ] fhir:Extension.valueUsageContext [ UsageContext ] fhir:Extension.valueDosage [ Dosage ] ]
Changes since DSTU2
Extension | |
Extension.value[x] |
|
See the Full Difference for further information
Notes:
url
is a mandatory attribute / property and identifies a retrievable extension definition that defines the content and meaning of the extensionurl
SHALL be a URL, not a URN (e.g. not an OID or a UUID), and it SHALL be the canonical URL of a StructureDefinition that defines the extension. Except for child extensions defined within complex extensions, the URL SHALL be an absolute URL. Here is an example of an extension in XML:
<name> <extension url="http://hl7.org/fhir/StructureDefinition/iso-21090-name-use" > <valueCode value="I" /> </extension> <text value="Chief Red Cloud"/> </name>
In this example the name with text = "Chief Red Cloud" is extended to have a name use code of "Indigenous" (defined in ISO 21090, but very rarely used in practice).
In JSON, extensions are represented similarly:
{ "extension" : [{ "url" : "http://hl7.org/fhir/StructureDefinition/iso-21090-name-use", "valueCode" : "I" }], "text" : "Chief Red Cloud" }
Making the types explicit in the representation means that all systems can read and write (and therefore store and/or exchange) extensions correctly without needing to access the definition of the extension.
Note that the JSON representation for extensions on primitive data types is handled differently. See Representing primitive types in JSON for further information.
Extensions can also contain extensions, either because the extension definition itself defines complex content - that is, a nested tree of values in the extension - or because the extension is extended with an additional extension defined separately.
In the case where an extension defines complex content, the identity of the parts of the extension are local/relative to the reference to the extension definition.
As an example, consider extending a patient with information about citizenship containing 2 fields: code and period. In XML:
<Patient> <extension url="http://hl7.org/fhir/StructureDefinition/patient-citizenship" > <extension url="code" > <valueCodeableConcept> <coding> <system value="urn:iso:std:iso:3166" /> <code value="DE" /> </coding> </valueCodeableConcept> </extension> <extension url="period" > <valuePeriod> <start value="2009-03-14" /> </valuePeriod> </extension> </extension> <!-- other data for patient --> </Patient>
Or in JSON:
{ "resourceType" : "Patient", "extension" : [{ "url" : "http://hl7.org/fhir/StructureDefinition/patient-citizenship", "extension" : [{ "url" : "code", "valueCodeableConcept" : { "coding" : [{ "system" : "urn:iso:std:iso:3166", "code" : "DE" }] } }, { "url" : "period", "valuePeriod" : { "start" : "2009-03-14" } }] }] }
As the URL suggests, this extension is defined as part of this specification.
This extension can be extended again, by adding a "passport-number" extension:
The passport number is defined as a separate extension (e.g. by an implementing organization) rather than part of the official citizenship extension. The URL of the extension is thus different. In XML:
<Patient> <extension url="http://hl7.org/fhir/StructureDefinition/patient-citizenship" > <extension url="code" > <valueCodeableConcept> <coding> <system value="urn:iso:std:iso:3166" /> <code value="DE" /> </coding> </valueCodeableConcept> </extension> <extension url="period" > <valuePeriod> <start value="2009-03-14" /> </valuePeriod> </extension> </extension> <extension url="http://acme.org/fhir/StructureDefinition/passport-number" > <valueString value="12345ABC" /> </extension> <!-- other data for patient --> </Patient>
or in JSON:
{ "resourceType" : "Patient", "extension" : [{ "url" : "http://hl7.org/fhir/StructureDefinition/patient-citizenship", "extension" : [{ "url" : "code", "valueCodeableConcept" : { "coding" : [{ "system" : "urn:iso:std:iso:3166", "code" : "DE" }] } }, { "url" : "period", "valuePeriod" : { "start" : "2009-03-14" } }, { "url": "http://acme.org/fhir/StructureDefinition/passport-number", "valueString": "12345ABC" }] }] }
There are some cases where the information provided in an extension modifies the meaning of the element that contains it. Typically, this means information that qualifies or negates the primary meaning of the element that contains it. Some examples:
Such extensions are known as "modifier extensions". Implementers should avoid the use of modifier extensions where possible. Any use should be carefully considered against its possible downstream consequences. However, implementers are often forced into these situations by the business arrangements around the use of resources, so this specification creates a framework for handling such cases. If modifier extensions are present, an application cannot safely process the resource unless it knows what the extension means for its own use of the data.
This specification allows for such modifier elements to be included at the base of a resource or in any elements that do not have a data type (e.g. the elements that correspond to classes in the resource UML diagrams), and on a few specially selected data types. Other data types, or elements inside data types SHALL NOT have modifier extensions, and extensions SHALL NOT have modifier extensions internally (except for the reusable structures allowed to appear in extensions, listed above).
Note that complex extensions are allowed to have elements in the complex extension that are marked
Is-Modifier = true, which means that these elements modify the extension value itself.
Internal extensions like this marked "Is-Modifier" are still represented using the extension
element , not modifierExtension
because the impact of the modifier element is expected to be known by applications that understand the containing extension.
Any modifierExtension defined outside an extension cannot be placed in another extension.
In XML, these modifier elements are represented using an element named modifierExtension
, which has same content as the
extension
element documented above:
Example: There's no element on MedicationRequest to write an "anti-prescription" - an instruction not to take a medication for a particular period. Classical clinical recording systems do not record this as a prescription - but one particular system does, and these "anti-prescription" records need to be shared within the institution where this happens as they are an important part of the workflow. Hence, applications are allowed to extend a resource with data like this:
<MedicationRequest> <modifierExtension url="http://example.org/fhir/StructureDefinition/anti-prescription"> <valueBoolean value="true"/> </modifierExtension> <!-- ... other content ... --> </MedicationRequest>
Or in JSON:
{ "resourceType" : "MedicationRequest", "modifierExtension" : [{ "url" : "http://example.org/fhir/StructureDefinition/anti-prescription", "valueBoolean" : true }], .. other content ... }
Implementations processing the data in resources SHALL check for modifiers anywhere they could appear, and if a modifier extension is present, SHALL do one of these things:
Processing the data of a resource typically means copying or filtering data out of a resource for use in another context (display to a human, decision support, exchange in another format where not all information is included, or storing it for this kind of use). Servers and background processes that simply move whole resources around unchanged are not "processing the data of the resource", and therefore these applications are not required to check for unknown modifier extensions.
#1: When an application understands this extension, it means that some developer has provided appropriate instructions for what to do with the data contained in it because of the existence of the modifier extension.
#2: This means that implementations are not inherently required to "support" a modifier extension in any meaningful way - they can achieve this understanding by rejecting instances that contain this extension (a server, for instance, could return a HTTP 422 status code with an OperationOutcome if a client PUTs or POSTs a modifier extension it does not know). Applications might also be able to ignore a modifier extension if they know that it is safe to do so in their own context, though this would not usually be the case.
Note that implementations might be able to be sure, due to their implementation environment (e.g. specific trading partner agreement), that modifier extensions will never occur, and can therefore meet the requirement to check for modifiers at the design stage. However, since integration and deployment options often change, applications SHOULD always check for modifier extensions when processing resources.
#3: One way to warn the user is to download the extension definition from the given URL, and then use the defined display name to present the extension to the user. An error message could look something like this:
Note that the narrative of the resource SHALL contain modifying information, so it is safe to show this to the user as an expression of the resource's content. A warning dialog box could be extended to offer the user the choice to see the original narrative.
Here is the prescription example from above with narrative:
<MedicationRequest xmlns="http://hl7.org/fhir"> <text> <status value="generated"/> <div xmlns="http://www.w3.org/1999/xhtml"> <p><b>Note: This prescription is an instruction NOT to take a medication</b></p> <!-- snip actual narrative --> </div> </text> <!-- ...data... --> <modifierExtension url="http://example.org/fhir/StructureDefinition/anti-prescription"> <valueBoolean value="true"/> </modifierExtension> <!-- ...data... --> </MedicationRequest>
An application only needs to concern itself with modifier extensions on elements that
it processes. Take, for example, a case where a procedure resource
has a modifier extension on one of the performer
elements indicating that they did
not participate in the procedure. If an application is not using the performer details at all,
the fact that one of the performers has a modifier extension is irrelevant and the
application is free to ignore it. If the application does process the performers, and it sees the
modifier extension, it must act in one of the ways outlined above.
In some cases, implementers might find that they do not have appropriate data for an element with minimum cardinality = 1. In this case, the element must be present, but unless the resource or a profile on it has made the actual value of the primitive data type mandatory, it is possible to provide an extension that explains why the primitive value is not present:
<uri> <extension url="http://hl7.org/fhir/StructureDefinition/data-absent-reason"> <valueCode="unknown"/> </extension> </uri>
In this example, instead of a value, a data missing code is provided. Note that it is not required that this particular extension be used. This extension is not a modifier extension, because the primitive data type has no value.
It is not valid to create a fictional piece of data for the primitive value, and then add an extension indicating that the data has been constructed to meet the data rules. This would be both a bad idea, and a modifier extension, which is not allowed on data types.
Extensions are a way of allowing local requirements to be reflected in a resource using a common information based approach so that all systems can confidently process them using the same tools. However, when it comes to processing the information, applications will be constrained in their ability to handle extensions by the degree to which they are informed about them.
While the structured definition of an extension should always be available (see below for details), the mere availability of a definition does not automatically mean that applications know how to handle them correctly - generally, human decisions are required to determine how the data in extensions should be handled, along with the implicit obligations that surround the information.
For this reason, local requirements that manifest as extensions are an obstacle to integration and interoperability. The more the requirements are shared (i.e. regional or national scale), the less impact they will have. The consistent representation, definition and registration of extensions that this specification defines cannot resolve that problem - it only provides a framework within which such local variations can be handled more easily.
When it comes to deploying applications that support local requirements, situations will very likely arise where different applications exchanging information with each other are supporting different sets of extensions. This specification defines some basic rules that are intended to make management of these situations easier, but they cannot resolve them.
The degree to which a system can retain unknown extensions is a function of the type of system it is: a general purpose FHIR server, or a middleware engine would be expected to retain all extensions, while an application that manages patient registration through a user interface can only retain extensions to the degree that the information in them is part of the set managed by the user. Other applications will fall somewhere between these two extremes.
Use the following rules as a guideline for handling resources: