FHIR Cross-Version Extensions package for FHIR R4 from FHIR R5
0.0.1-snapshot-2 - informative International flag

FHIR Cross-Version Extensions package for FHIR R4 from FHIR R5 - Version 0.0.1-snapshot-2. See the Directory of published versions

: Statistics Code - XML Representation

Page standards status: Informative Maturity Level: 0

Raw xml | Download


<CodeSystem xmlns="http://hl7.org/fhir">
  <id value="observation-statistics"/>
  <text>
    <status value="generated"/>
    <div xmlns="http://www.w3.org/1999/xhtml">
            <p>This code system 
              <code>http://hl7.org/fhir/observation-statistics</code> defines the following codes:
            </p>
            <table class="codes">
              <tr>
                <td style="white-space:nowrap">
                  <b>Code</b>
                </td>
                <td>
                  <b>Display</b>
                </td>
                <td>
                  <b>Definition</b>
                </td>
              </tr>
              <tr>
                <td style="white-space:nowrap">average
                  <a name="observation-statistics-average"> </a>
                </td>
                <td>Average</td>
                <td>The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">maximum
                  <a name="observation-statistics-maximum"> </a>
                </td>
                <td>Maximum</td>
                <td>The [maximum](https://en.wikipedia.org/wiki/Maximal_element) value of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">minimum
                  <a name="observation-statistics-minimum"> </a>
                </td>
                <td>Minimum</td>
                <td>The [minimum](https://en.wikipedia.org/wiki/Minimal_element) value of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">count
                  <a name="observation-statistics-count"> </a>
                </td>
                <td>Count</td>
                <td>The [number] of valid measurements over the stated period that contributed to the other statistical outputs.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">total-count
                  <a name="observation-statistics-total-count"> </a>
                </td>
                <td>Total Count</td>
                <td>The total [number] of valid measurements over the stated period, including observations that were ignored because they did not contain valid result values.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">median
                  <a name="observation-statistics-median"> </a>
                </td>
                <td>Median</td>
                <td>The [median](https://en.wikipedia.org/wiki/Median) of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">std-dev
                  <a name="observation-statistics-std-dev"> </a>
                </td>
                <td>Standard Deviation</td>
                <td>The [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation) of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">sum
                  <a name="observation-statistics-sum"> </a>
                </td>
                <td>Sum</td>
                <td>The [sum](https://en.wikipedia.org/wiki/Summation) of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">variance
                  <a name="observation-statistics-variance"> </a>
                </td>
                <td>Variance</td>
                <td>The [variance](https://en.wikipedia.org/wiki/Variance) of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">20-percent
                  <a name="observation-statistics-20-percent"> </a>
                </td>
                <td>20th Percentile</td>
                <td>The 20th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">80-percent
                  <a name="observation-statistics-80-percent"> </a>
                </td>
                <td>80th Percentile</td>
                <td>The 80th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">4-lower
                  <a name="observation-statistics-4-lower"> </a>
                </td>
                <td>Lower Quartile</td>
                <td>The lower [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">4-upper
                  <a name="observation-statistics-4-upper"> </a>
                </td>
                <td>Upper Quartile</td>
                <td>The upper [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">4-dev
                  <a name="observation-statistics-4-dev"> </a>
                </td>
                <td>Quartile Deviation</td>
                <td>The difference between the upper and lower [Quartiles](https://en.wikipedia.org/wiki/Quartile) is called the Interquartile range. (IQR = Q3-Q1) Quartile deviation or Semi-interquartile range is one-half the difference between the first and the third quartiles.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">5-1
                  <a name="observation-statistics-5-1"> </a>
                </td>
                <td>1st Quintile</td>
                <td>The lowest of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">5-2
                  <a name="observation-statistics-5-2"> </a>
                </td>
                <td>2nd Quintile</td>
                <td>The second of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">5-3
                  <a name="observation-statistics-5-3"> </a>
                </td>
                <td>3rd Quintile</td>
                <td>The third of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">5-4
                  <a name="observation-statistics-5-4"> </a>
                </td>
                <td>4th Quintile</td>
                <td>The fourth of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population.</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">skew
                  <a name="observation-statistics-skew"> </a>
                </td>
                <td>Skew</td>
                <td>Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive or negative, or even undefined.  Source: [Wikipedia](https://en.wikipedia.org/wiki/Skewness).</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">kurtosis
                  <a name="observation-statistics-kurtosis"> </a>
                </td>
                <td>Kurtosis</td>
                <td>Kurtosis  is a measure of the &quot;tailedness&quot; of the probability distribution of a real-valued random variable.   Source: [Wikipedia](https://en.wikipedia.org/wiki/Kurtosis).</td>
              </tr>
              <tr>
                <td style="white-space:nowrap">regression
                  <a name="observation-statistics-regression"> </a>
                </td>
                <td>Regression</td>
                <td>Linear regression is an approach for modeling two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variables. Source: [Wikipedia](https://en.wikipedia.org/wiki/Simple_linear_regression)  This Statistic code will return both a gradient and an intercept value.</td>
              </tr>
            </table>
          </div>
  </text>
  <extension url="http://hl7.org/fhir/StructureDefinition/package-source">
    <extension url="packageId">
      <valueId value="hl7.fhir.uv.xver-r5.r4"/>
    </extension>
    <extension url="version">
      <valueString value="0.0.1-snapshot-2"/>
    </extension>
  </extension>
  <extension
             url="http://hl7.org/fhir/StructureDefinition/structuredefinition-wg">
    <valueCode value="oo"/>
  </extension>
  <url value="http://hl7.org/fhir/observation-statistics"/>
  <version value="5.0.0"/>
  <name value="StatisticsCode"/>
  <title value="Statistics Code"/>
  <status value="active"/>
  <experimental value="false"/>
  <date value="2022-12-01T08:29:23+10:00"/>
  <publisher value="Orders and Observations"/>
  <contact>
    <name value="Orders and Observations"/>
    <telecom>
      <system value="url"/>
      <value value="http://www.hl7.org/Special/committees/orders"/>
    </telecom>
  </contact>
  <description
               value="The statistical operation parameter -&quot;statistic&quot; codes."/>
  <jurisdiction>
    <coding>
      <system value="http://unstats.un.org/unsd/methods/m49/m49.htm"/>
      <code value="001"/>
      <display value="World"/>
    </coding>
  </jurisdiction>
  <caseSensitive value="true"/>
  <valueSet
            value="http://hl7.org/fhir/ValueSet/observation-statistics|4.0.1"/>
  <content value="complete"/>
  <concept>
    <code value="average"/>
    <display value="Average"/>
    <definition
                value="The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="maximum"/>
    <display value="Maximum"/>
    <definition
                value="The [maximum](https://en.wikipedia.org/wiki/Maximal_element) value of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="minimum"/>
    <display value="Minimum"/>
    <definition
                value="The [minimum](https://en.wikipedia.org/wiki/Minimal_element) value of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="count"/>
    <display value="Count"/>
    <definition
                value="The [number] of valid measurements over the stated period that contributed to the other statistical outputs."/>
  </concept>
  <concept>
    <code value="total-count"/>
    <display value="Total Count"/>
    <definition
                value="The total [number] of valid measurements over the stated period, including observations that were ignored because they did not contain valid result values."/>
  </concept>
  <concept>
    <code value="median"/>
    <display value="Median"/>
    <definition
                value="The [median](https://en.wikipedia.org/wiki/Median) of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="std-dev"/>
    <display value="Standard Deviation"/>
    <definition
                value="The [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation) of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="sum"/>
    <display value="Sum"/>
    <definition
                value="The [sum](https://en.wikipedia.org/wiki/Summation) of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="variance"/>
    <display value="Variance"/>
    <definition
                value="The [variance](https://en.wikipedia.org/wiki/Variance) of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="20-percent"/>
    <display value="20th Percentile"/>
    <definition
                value="The 20th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="80-percent"/>
    <display value="80th Percentile"/>
    <definition
                value="The 80th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="4-lower"/>
    <display value="Lower Quartile"/>
    <definition
                value="The lower [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="4-upper"/>
    <display value="Upper Quartile"/>
    <definition
                value="The upper [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period."/>
  </concept>
  <concept>
    <code value="4-dev"/>
    <display value="Quartile Deviation"/>
    <definition
                value="The difference between the upper and lower [Quartiles](https://en.wikipedia.org/wiki/Quartile) is called the Interquartile range. (IQR = Q3-Q1) Quartile deviation or Semi-interquartile range is one-half the difference between the first and the third quartiles."/>
  </concept>
  <concept>
    <code value="5-1"/>
    <display value="1st Quintile"/>
    <definition
                value="The lowest of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population."/>
  </concept>
  <concept>
    <code value="5-2"/>
    <display value="2nd Quintile"/>
    <definition
                value="The second of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population."/>
  </concept>
  <concept>
    <code value="5-3"/>
    <display value="3rd Quintile"/>
    <definition
                value="The third of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population."/>
  </concept>
  <concept>
    <code value="5-4"/>
    <display value="4th Quintile"/>
    <definition
                value="The fourth of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population."/>
  </concept>
  <concept>
    <code value="skew"/>
    <display value="Skew"/>
    <definition
                value="Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive or negative, or even undefined.  Source: [Wikipedia](https://en.wikipedia.org/wiki/Skewness)."/>
  </concept>
  <concept>
    <code value="kurtosis"/>
    <display value="Kurtosis"/>
    <definition
                value="Kurtosis  is a measure of the &quot;tailedness&quot; of the probability distribution of a real-valued random variable.   Source: [Wikipedia](https://en.wikipedia.org/wiki/Kurtosis)."/>
  </concept>
  <concept>
    <code value="regression"/>
    <display value="Regression"/>
    <definition
                value="Linear regression is an approach for modeling two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variables. Source: [Wikipedia](https://en.wikipedia.org/wiki/Simple_linear_regression)  This Statistic code will return both a gradient and an intercept value."/>
  </concept>
</CodeSystem>