Release 5 Ballot

This page is part of the FHIR Specification (v5.0.0-ballot: FHIR R5 Ballot Preview). The current version which supercedes this version is 5.0.0. For a full list of available versions, see the Directory of published versions

Example Citation/citation-example-research-doi (XML)

Clinical Decision Support Work GroupMaturity Level: N/AStandards Status: InformativeCompartments: Not linked to any defined compartments

Raw XML (canonical form + also see XML Format Specification)

Jump past Narrative

NInFEA Citation (id = "citation-example-research-doi")

<?xml version="1.0" encoding="UTF-8"?>

<Citation xmlns="http://hl7.org/fhir">
    <id value="citation-example-research-doi"/> 
  <text> <status value="generated"/> <div xmlns="http://www.w3.org/1999/xhtml"><p> <b> Generated Narrative: Citation</b> <a name="citation-example-research-doi"> </a> </p> <div style="display: inline-block; background-color: #d9e0e7; padding: 6px; margin: 4px; border: 1px
       solid #8da1b4; border-radius: 5px; line-height: 60%"><p style="margin-bottom: 0px">Resource Citation &quot;citation-example-research-doi&quot; </p> </div> <p> <b> identifier</b> : FEvIR Object Identifier: 60</p> <p> <b> title</b> : NInFEA Citation</p> <p> <b> status</b> : active</p> <p> <b> date</b> : 2021-09-24T10:41:01.74Z</p> <p> <b> publisher</b> : Computable Publishing LLC</p> <p> <b> contact</b> : <a href="mailto:support@computablepublishing.com">support@computablepublishing.com</a> </p> <p> <b> description</b> : A citation of a dataset</p> <p> <b> copyright</b> : https://creativecommons.org/licenses/by-nc-sa/4.0/</p> <blockquote> <p> <b> summary</b> </p> <p> <b> style</b> : as reported on PhysioNet <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> text</b> : Pani, D., Sulas, E., Urru, M., Sameni, R., Raffo, L., &amp; Tumbarello, R. (2020). NInFEA:
           Non-Invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research (version
           1.0.0). PhysioNet. https://doi.org/10.13026/c4n5-3b04.</p> </blockquote> <blockquote> <p> <b> summary</b> </p> <p> <b> style</b> : Computable Publishing <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (citation-summary-style#comppub)</span> </p> <p> <b> text</b> : NInFEA: Non-Invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology
           Research [Dataset], version 1.0.0. Contributors: Danilo Pani, Eleonora Sulas, Monica Urru,
           Reza Sameni, Luigi Raffo, Roberto Tumbarello. In: PhysioNet, DOI 10.13026/c4n5-3b04. Published
           November 12, 2020. Accessed March 17, 2021. Available at: https://physionet.org/content/ninfea/1.0.0
          /.</p> </blockquote> <blockquote> <p> <b> citedArtifact</b> </p> <p> <b> identifier</b> : id: 10.13026/c4n5-3b04</p> <p> <b> relatedIdentifier</b> : id: 10.1038/s41597-021-00811-3</p> <p> <b> dateAccessed</b> : 2021-03-17</p> <h3> Versions</h3> <table class="grid"><tr> <td> -</td> <td> <b> Value</b> </td> </tr> <tr> <td> *</td> <td> 1.0.0</td> </tr> </table> <h3> Titles</h3> <table class="grid"><tr> <td> -</td> <td> <b> Type</b> </td> <td> <b> Language</b> </td> <td> <b> Text</b> </td> </tr> <tr> <td> *</td> <td> primary-human-use <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </td> <td> English <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (Tags for the Identification of Languages[4.0.1]#en)</span> </td> <td> NInFEA: Non-Invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research</td> </tr> </table> <h3> Abstracts</h3> <table class="grid"><tr> <td> -</td> <td> <b> Type</b> </td> <td> <b> Language</b> </td> <td> <b> Text</b> </td> </tr> <tr> <td> *</td> <td> Primary human use <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="codesystem-cited-artifact-abstract-type.html">CitedArtifactAbstractType</a> #primary-human-use)</span> </td> <td> English <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="http://terminology.hl7.org/3.1.0/CodeSystem-v3-ietf3066.html">Tags for the Identification of Languages</a> #en)</span> </td> <td> The development of algorithms for the extraction of the foetal ECG (fECG) from non-invasive
               recordings is hampered by the lack of publicly-available reference datasets, which could
               be used to benchmark different algorithms while providing a ground truth on the foetal
               heart activity when an invasive scalp lead is unavailable. By enriching the electrophysiological
               recordings with simultaneous multimodal signals, these datasets could also help the investigation
               of the foetal cardiac physiology, providing ground truth for the analysis in early pregnancy,
               when the fECG is not directly accessible.  The Non-Invasive Multimodal Foetal ECG-Doppler
               Dataset for Antenatal Cardiology Research (NInFEA) is the first open-access dataset featuring
               simultaneous non-invasive electrophysiological recordings, fetal pulsed-wave Doppler (PWD)
               and maternal respiration signals. The dataset includes 60 entries from 39 voluntary pregnant
               women, between the 21st and the 27th week of gestation. Every entry is composed of 27
               electrophysiological channels (2048 Hz, 22 bits, acquired by means of the TMSi Porti7
               system), maternal respiration signal (through a resistive thoracic belt), synchronised
               foetal trans-abdominal PWD and clinical annotations provided by expert clinicians at the
               time of the signal collection.</td> </tr> </table> <blockquote> <p> <b> relatesTo</b> </p> <p> <b> type</b> : derived-from</p> <p> <b> classifier</b> : original publication <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> citation</b> : Sulas, E., Urru, M., Tumbarello, R., Raffo, L., Sameni, R., Pani, D., A non-invasive
             multimodal foetal ECG–Doppler dataset for antenatal cardiology research. Sci Data 8, 30
             (2021). https://doi.org/10.1038/s41597-021-00811-3</p> <h3> Documents</h3> <table class="grid"><tr> <td> -</td> <td> <b> Url</b> </td> </tr> <tr> <td> *</td> <td> <a href="https://doi.org/10.1038/s41597-021-00811-3">https://doi.org/10.1038/s41597-021-00811-3</a> </td> </tr> </table> </blockquote> <blockquote> <p> <b> relatesTo</b> </p> <p> <b> type</b> : depends-on</p> <p> <b> classifier</b> : ontology <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> display</b> : Experimental Factor Ontology</p> <h3> Documents</h3> <table class="grid"><tr> <td> -</td> <td> <b> Url</b> </td> </tr> <tr> <td> *</td> <td> <a href="http://data.bioontology.org/ontologies/EFO">http://data.bioontology.org/ontologies/EFO</a> </td> </tr> </table> </blockquote> <blockquote> <p> <b> publicationForm</b> </p> <h3> PublishedIns</h3> <table class="grid"><tr> <td> -</td> <td> <b> Type</b> </td> <td> <b> Title</b> </td> <td> <b> Publisher</b> </td> </tr> <tr> <td> *</td> <td> Database <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="codesystem-published-in-type.html">PublishedInType[5.0.0]</a> #D019991)</span> </td> <td> PhysioNet</td> <td> <span> : MIT Laboratory for Computational Physiology</span> </td> </tr> </table> <p> <b> articleDate</b> : 2020-11-12</p> <p> <b> language</b> : English <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (Tags for the Identification of Languages[4.0.1]#en)</span> </p> <p> <b> copyright</b> : https://physionet.org/content/ninfea/view-license/1.0.0/ and https://physionet.org/content/ninfea/
            1.0.0/LICENSE.txt</p> </blockquote> <blockquote> <p> <b> webLocation</b> </p> <p> <b> classifier</b> : Webpage <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="codesystem-artifact-url-classifier.html">ArtifactUrlClassifier[5.0.0]</a> #webpage)</span> </p> <p> <b> url</b> : <a href="https://physionet.org/content/ninfea/1.0.0/">https://physionet.org/content/ninfea/1.0.0/</a> </p> </blockquote> <blockquote> <p> <b> webLocation</b> </p> <p> <b> classifier</b> : DOI Based <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="codesystem-artifact-url-classifier.html">ArtifactUrlClassifier[5.0.0]</a> #doi-based)</span> </p> <p> <b> url</b> : <a href="https://doi.org/10.13026/c4n5-3b04">https://doi.org/10.13026/c4n5-3b04</a> </p> </blockquote> <blockquote> <p> <b> webLocation</b> </p> <p> <b> classifier</b> : original publication <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="codesystem-artifact-url-classifier.html">ArtifactUrlClassifier[5.0.0]</a> #doi-based &quot;DOI Based&quot;)</span> </p> <p> <b> url</b> : <a href="https://doi.org/10.1038/s41597-021-00811-3">https://doi.org/10.1038/s41597-021-00811-3</a> </p> </blockquote> <blockquote> <p> <b> webLocation</b> </p> <p> <b> classifier</b> : Compressed file <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="codesystem-artifact-url-classifier.html">ArtifactUrlClassifier[5.0.0]</a> #compressed-file)</span> </p> <p> <b> url</b> : <a href="https://physionet.org/static/published-projects/ninfea/ninfea-non-invasive-multimodal-foetal-ecg-dop
            pler-dataset-for-antenatal-cardiology-research-1.0.0.zip">https://physionet.org/static/published-projects/ninfea/ninfea-non-invasive-multimodal-foetal-ecg-dop
              pler-dataset-for-antenatal-cardiology-research-1.0.0.zip</a> </p> </blockquote> <blockquote> <p> <b> webLocation</b> </p> <p> <b> classifier</b> : DOI-for-metadata <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> url</b> : <a href="https://doi.org/10.6084/m9.figshare.13283492">https://doi.org/10.6084/m9.figshare.13283492</a> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> classifier</b> : Knowledge Artifact Type <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="codesystem-cited-artifact-classification-type.html">CitedArtifactClassificationType</a> #knowledge-artifact-type)</span> , Dataset <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="codesystem-citation-artifact-classifier.html">CitationArtifactClassifier[5.0.0]</a> #D064886)</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : ecg <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (efo#EFO_0004327 &quot;electrocardiography&quot;)</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : foetus <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (obo#FMA_63919)</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : pwd <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : doppler <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : foetal ecg <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : maternal ecg <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : pwd envelope <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : non-invasive <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : cardiology <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="https://browser.ihtsdotools.org/">SNOMED CT</a> #394579002 &quot;Cardiology (qualifier value)&quot;)</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : early pregnancy <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="https://browser.ihtsdotools.org/">SNOMED CT</a> #314204000 &quot;Early stage of pregnancy (finding)&quot;)</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : antenatal <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : topic <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : fecg <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="https://browser.ihtsdotools.org/">SNOMED CT</a> #75444003 &quot;Fetal electrocardiogram (procedure)&quot;)</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : subject type <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : Homo sapiens <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (NCBITAXON#9606)</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : use context <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : gestational age <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (efo#EFO_0005112)</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : use context <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : electrocardiography <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (efo#EFO_0004327)</span> </p> </blockquote> <blockquote> <p> <b> classification</b> </p> <p> <b> type</b> : use context <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> classifier</b> : heart electrical impulse conduction trait <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (obo#VT_2000017)</span> </p> </blockquote> <blockquote> <p> <b> contributorship</b> </p> <blockquote> <p> <b> summary</b> </p> <p> <b> type</b> : Author string <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> (<a href="codesystem-contributor-summary-type.html">ContributorSummaryType[5.0.0]</a> #author-string)</span> </p> <p> <b> source</b> : copied-from-article <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> value</b> : Danilo Pani, Eleonora Sulas, Monica Urru, Reza Sameni, Luigi Raffo, Roberto Tumbarello</p> </blockquote> <blockquote> <p> <b> summary</b> </p> <p> <b> type</b> : acknowledgements <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> source</b> : copied-from-article <span style="background: LightGoldenRodYellow; margin: 4px; border: 1px solid khaki"> ()</span> </p> <p> <b> value</b> : The authors wish to thank the Pediatric Cardiology and Congenital Heart Disease Unit,
               Brotzu Hospital (Cagliari, Italy), where the dataset was collected, and all the voluntary
               pregnant women for their kindness in giving their signals for this research. The authors
               gratefully thank Alessandra Cadoni, Graziella Secchi, Luisa Aru, Elisa Farris, Chiara
               Fenu, Elisa Gusai, Giulia Baldazzi, Giulia Pili for their support in the recording of
               the signals included in this dataset.  Part of this research was supported by the Italian
               Government—Progetti di InteresseNazionale (PRIN) under the grant agreement 2017RR5EW3
               - ICT4MOMs project.  Eleonora Sulas is grateful to Sardinia Regional Government for supporting
               her PhD scholarship (P.O.R.F.S.E., European Social Fund 2014-2020).  Reza Sameni acknowledges
               the funding from the European Research Council Advanced Grant Number 320684, on Challenges
               in the Extraction and Separation of Sources (CHESS) for his contribution in this research,
               provided during his appointment at GIPSA-lab, Grenoble Alpes University, Grenoble, France.</p> </blockquote> </blockquote> </blockquote> </div> </text> <identifier> 
    <type> 
      <text value="FEvIR Object Identifier"/> 
    </type> 
    <system value="https://fevir.net"/> 
    <value value="60"/> 
    <assigner> 
      <display value="Computable Publishing LLC"/> 
    </assigner> 
  </identifier> 
  <title value="NInFEA Citation"/> 
  <status value="active"/> 
  <date value="2021-09-24T10:41:01.740Z"/> 
  <publisher value="Computable Publishing LLC"/> 
  <contact> 
    <telecom> 
      <system value="email"/> 
      <value value="support@computablepublishing.com"/> 
    </telecom> 
  </contact> 
  <description value="A citation of a dataset"/> 
  <copyright value="https://creativecommons.org/licenses/by-nc-sa/4.0/"/> 
  <summary> 
    <style> 
      <text value="as reported on PhysioNet"/> 
    </style> 
    <text value="Pani, D., Sulas, E., Urru, M., Sameni, R., Raffo, L., &amp; Tumbarello, R. (2020). NInFEA:
     Non-Invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research (version
     1.0.0). PhysioNet. https://doi.org/10.13026/c4n5-3b04."/> 
  </summary> 
  <summary> 
    <style> 
      <coding> 
        <system value="http://terminology.hl7.org/ValueSet/citation-summary-style"/> 
        <code value="comppub"/> 
        <display value="Computable Publishing"/> 
      </coding> 
    </style> 
    <text value="NInFEA: Non-Invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research
     [Dataset], version 1.0.0. Contributors: Danilo Pani, Eleonora Sulas, Monica Urru, Reza
     Sameni, Luigi Raffo, Roberto Tumbarello. In: PhysioNet, DOI 10.13026/c4n5-3b04. Published
     November 12, 2020. Accessed March 17, 2021. Available at: https://physionet.org/content/ninfea/1.0.0
    /."/> 
  </summary> 
  <citedArtifact> 
    <identifier> 
      <system value="https://doi.org"/> 
      <value value="10.13026/c4n5-3b04"/> 
    </identifier> 
    <relatedIdentifier> 
      <system value="https://doi.org"/> 
      <value value="10.1038/s41597-021-00811-3"/> 
    </relatedIdentifier> 
    <dateAccessed value="2021-03-17"/> 
    <version> 
      <value value="1.0.0"/> 
    </version> 
    <title> 
      <type> 
        <text value="primary-human-use"/> 
      </type> 
      <language> 
        <coding> 
          <system value="urn:ietf:bcp:47"/> 
          <version value="4.0.1"/> 
          <code value="en"/> 
          <display value="English"/> 
        </coding> 
      </language> 
      <text value="NInFEA: Non-Invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research"/> 
    </title> 
    <abstract> 
      <type> 
        <coding> 
          <system value="http://terminology.hl7.org/CodeSystem/cited-artifact-abstract-type"/> 
          <code value="primary-human-use"/> 
          <display value="Primary human use"/> 
        </coding> 
      </type> 
      <language> 
        <coding> 
          <system value="urn:ietf:bcp:47"/> 
          <code value="en"/> 
          <display value="English"/> 
        </coding> 
      </language> 
      <text value="The development of algorithms for the extraction of the foetal ECG (fECG) from non-invasive
       recordings is hampered by the lack of publicly-available reference datasets, which could
       be used to benchmark different algorithms while providing a ground truth on the foetal
       heart activity when an invasive scalp lead is unavailable. By enriching the electrophysiological
       recordings with simultaneous multimodal signals, these datasets could also help the investigation
       of the foetal cardiac physiology, providing ground truth for the analysis in early pregnancy,
       when the fECG is not directly accessible.  The Non-Invasive Multimodal Foetal ECG-Doppler
       Dataset for Antenatal Cardiology Research (NInFEA) is the first open-access dataset featuring
       simultaneous non-invasive electrophysiological recordings, fetal pulsed-wave Doppler (PWD)
       and maternal respiration signals. The dataset includes 60 entries from 39 voluntary pregnant
       women, between the 21st and the 27th week of gestation. Every entry is composed of 27
       electrophysiological channels (2048 Hz, 22 bits, acquired by means of the TMSi Porti7
       system), maternal respiration signal (through a resistive thoracic belt), synchronised
       foetal trans-abdominal PWD and clinical annotations provided by expert clinicians at the
       time of the signal collection."/> 
    </abstract> 
    <relatesTo> 
      <type value="derived-from"/> 
      <classifier> 
        <text value="original publication"/> 
      </classifier> 
      <citation value="Sulas, E., Urru, M., Tumbarello, R., Raffo, L., Sameni, R., Pani, D., A non-invasive multimodal
       foetal ECG–Doppler dataset for antenatal cardiology research. Sci Data 8, 30 (2021). https://doi.org
      /10.1038/s41597-021-00811-3"/> 
      <document> 
        <url value="https://doi.org/10.1038/s41597-021-00811-3"/> 
      </document> 
    </relatesTo> 
    <relatesTo> 
      <type value="depends-on"/> 
      <classifier> 
        <text value="ontology"/> 
      </classifier> 
      <display value="Experimental Factor Ontology"/> 
      <document> 
        <url value="http://data.bioontology.org/ontologies/EFO"/> 
      </document> 
    </relatesTo> 
    <publicationForm> 
      <publishedIn> 
        <type> 
          <coding> 
            <system value="http://terminology.hl7.org/CodeSystem/published-in-type"/> 
            <version value="5.0.0"/> 
            <code value="D019991"/> 
            <display value="Database"/> 
          </coding> 
        </type> 
        <title value="PhysioNet"/> 
        <publisher> 
          <display value="MIT Laboratory for Computational Physiology"/> 
        </publisher> 
      </publishedIn> 
      <articleDate value="2020-11-12"/> 
      <language> 
        <coding> 
          <system value="urn:ietf:bcp:47"/> 
          <version value="4.0.1"/> 
          <code value="en"/> 
          <display value="English"/> 
        </coding> 
      </language> 
      <copyright value="https://physionet.org/content/ninfea/view-license/1.0.0/ and https://physionet.org/content/ninfea/1.
      0.0/LICENSE.txt"/> 
    </publicationForm> 
    <webLocation> 
      <classifier> 
        <coding> 
          <system value="http://terminology.hl7.org/CodeSystem/artifact-url-classifier"/> 
          <version value="5.0.0"/> 
          <code value="webpage"/> 
          <display value="Webpage"/> 
        </coding> 
      </classifier> 
      <url value="https://physionet.org/content/ninfea/1.0.0/"/> 
    </webLocation> 
    <webLocation> 
      <classifier> 
        <coding> 
          <system value="http://terminology.hl7.org/CodeSystem/artifact-url-classifier"/> 
          <version value="5.0.0"/> 
          <code value="doi-based"/> 
          <display value="DOI Based"/> 
        </coding> 
      </classifier> 
      <url value="https://doi.org/10.13026/c4n5-3b04"/> 
    </webLocation> 
    <webLocation> 
      <classifier> 
        <coding> 
          <system value="http://terminology.hl7.org/CodeSystem/artifact-url-classifier"/> 
          <version value="5.0.0"/> 
          <code value="doi-based"/> 
          <display value="DOI Based"/> 
        </coding> 
        <text value="original publication"/> 
      </classifier> 
      <url value="https://doi.org/10.1038/s41597-021-00811-3"/> 
    </webLocation> 
    <webLocation> 
      <classifier> 
        <coding> 
          <system value="http://terminology.hl7.org/CodeSystem/artifact-url-classifier"/> 
          <version value="5.0.0"/> 
          <code value="compressed-file"/> 
          <display value="Compressed file"/> 
        </coding> 
      </classifier> 
      <url value="https://physionet.org/static/published-projects/ninfea/ninfea-non-invasive-multimodal-foetal-ecg-dop
      pler-dataset-for-antenatal-cardiology-research-1.0.0.zip"/> 
    </webLocation> 
    <webLocation> 
      <classifier> 
        <text value="DOI-for-metadata"/> 
      </classifier> 
      <url value="https://doi.org/10.6084/m9.figshare.13283492"/> 
    </webLocation> 
    <classification> 
      <classifier> 
        <coding> 
          <system value="http://terminology.hl7.org/CodeSystem/cited-artifact-classification-type"/> 
          <code value="knowledge-artifact-type"/> 
          <display value="Knowledge Artifact Type"/> 
        </coding> 
      </classifier> 
      <classifier> 
        <coding> 
          <system value="http://hl7.org/fhir/citation-artifact-classifier"/> 
          <version value="5.0.0"/> 
          <code value="D064886"/> 
          <display value="Dataset"/> 
        </coding> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <coding> 
          <system value="http://www.ebi.ac.uk/efo"/> 
          <code value="EFO_0004327"/> 
          <display value="electrocardiography"/> 
        </coding> 
        <text value="ecg"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <coding> 
          <system value="http://purl.obolibrary.org/obo"/> 
          <code value="FMA_63919"/> 
          <display value="foetus"/> 
        </coding> 
        <text value="foetus"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <text value="pwd"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <text value="doppler"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <text value="foetal ecg"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <text value="maternal ecg"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <text value="pwd envelope"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <text value="non-invasive"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <coding> 
          <system value="http://snomed.info/sct"/> 
          <code value="394579002"/> 
          <display value="Cardiology (qualifier value)"/> 
        </coding> 
        <text value="cardiology"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <coding> 
          <system value="http://snomed.info/sct"/> 
          <code value="314204000"/> 
          <display value="Early stage of pregnancy (finding)"/> 
        </coding> 
        <text value="early pregnancy"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <text value="antenatal"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="topic"/> 
      </type> 
      <classifier> 
        <coding> 
          <system value="http://snomed.info/sct"/> 
          <code value="75444003"/> 
          <display value="Fetal electrocardiogram (procedure)"/> 
        </coding> 
        <text value="fecg"/> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="subject type"/> 
      </type> 
      <classifier> 
        <coding> 
          <system value="http://purl.bioontology.org/ontology/NCBITAXON"/> 
          <code value="9606"/> 
          <display value="Homo sapiens"/> 
        </coding> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="use context"/> 
      </type> 
      <classifier> 
        <coding> 
          <system value="http://www.ebi.ac.uk/efo"/> 
          <code value="EFO_0005112"/> 
          <display value="gestational age"/> 
        </coding> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="use context"/> 
      </type> 
      <classifier> 
        <coding> 
          <system value="http://www.ebi.ac.uk/efo"/> 
          <code value="EFO_0004327"/> 
          <display value="electrocardiography"/> 
        </coding> 
      </classifier> 
    </classification> 
    <classification> 
      <type> 
        <text value="use context"/> 
      </type> 
      <classifier> 
        <coding> 
          <system value="http://purl.obolibrary.org/obo"/> 
          <code value="VT_2000017"/> 
          <display value="heart electrical impulse conduction trait"/> 
        </coding> 
      </classifier> 
    </classification> 
    <contributorship> 
      <summary> 
        <type> 
          <coding> 
            <system value="http://terminology.hl7.org/CodeSystem/contributor-summary-type"/> 
            <version value="5.0.0"/> 
            <code value="author-string"/> 
            <display value="Author string"/> 
          </coding> 
        </type> 
        <source> 
          <text value="copied-from-article"/> 
        </source> 
        <value value="Danilo Pani, Eleonora Sulas, Monica Urru, Reza Sameni, Luigi Raffo, Roberto Tumbarello"/> 
      </summary> 
      <summary> 
        <type> 
          <text value="acknowledgements"/> 
        </type> 
        <source> 
          <text value="copied-from-article"/> 
        </source> 
        <value value="The authors wish to thank the Pediatric Cardiology and Congenital Heart Disease Unit,
         Brotzu Hospital (Cagliari, Italy), where the dataset was collected, and all the voluntary
         pregnant women for their kindness in giving their signals for this research. The authors
         gratefully thank Alessandra Cadoni, Graziella Secchi, Luisa Aru, Elisa Farris, Chiara
         Fenu, Elisa Gusai, Giulia Baldazzi, Giulia Pili for their support in the recording of
         the signals included in this dataset.  Part of this research was supported by the Italian
         Government—Progetti di InteresseNazionale (PRIN) under the grant agreement 2017RR5EW3
         - ICT4MOMs project.  Eleonora Sulas is grateful to Sardinia Regional Government for supporting
         her PhD scholarship (P.O.R.F.S.E., European Social Fund 2014-2020).  Reza Sameni acknowledges
         the funding from the European Research Council Advanced Grant Number 320684, on Challenges
         in the Extraction and Separation of Sources (CHESS) for his contribution in this research,
         provided during his appointment at GIPSA-lab, Grenoble Alpes University, Grenoble, France."/> 
      </summary> 
    </contributorship> 
  </citedArtifact> 
</Citation> 

Usage note: every effort has been made to ensure that the examples are correct and useful, but they are not a normative part of the specification.