STU 3 Candidate

This page is part of the FHIR Specification (v1.4.0: STU 3 Ballot 3). The current version which supercedes this version is 5.0.0. For a full list of available versions, see the Directory of published versions

Diagnosticreport-example-qicore.xml

Raw XML (canonical form)

Example of QICore DiagnosticReport (id = "diagnosticreport-example-qicore")

<DiagnosticReport xmlns="http://hl7.org/fhir">
  <id value="diagnosticreport-example-qicore"/>
  <text>
    <status value="generated"/>
    <div xmlns="http://www.w3.org/1999/xhtml">




      <h3>CBC Report for Wile. E. COYOTE (MRN: 23453) issued 3-Mar 2011 11:45</h3>





      <pre>
Test                  Units       Value       Reference Range
Haemoglobin           g/L         176         135 - 180
Red Cell Count        x10*12/L    5.9         4.2 - 6.0
Haematocrit                       0.55+       0.38 - 0.52
Mean Cell Volume      fL          99+         80 - 98
Mean Cell Haemoglobin pg          36+         27 - 35
Platelet Count        x10*9/L     444         150 - 450
White Cell Count      x10*9/L     4.6         4.0 - 11.0
Neutrophils           %           20
Neutrophils           x10*9/L     0.9---      2.0 - 7.5
Lymphocytes           %           20
Lymphocytes           x10*9/L     0.9-        1.1 - 4.0
Monocytes             %           20
Monocytes             x10*9/L     0.9         0.2 - 1.0
Eosinophils           %           20
Eosinophils           x10*9/L     0.92++      0.04 - 0.40
Basophils             %           20
Basophils             x10*9/L     0.92+++     &lt;0.21
      </pre>




      <p>Acme Laboratory, Inc signed: Dr Pete Pathologist</p>




    </div>
  </text>
  <contained>
  <!--  
  all the data items (= Observations) are contained
  in this diagnostic report. It would be equally
    valid - and normal - for them to be separate trackable
    items. However for the purposes of this example, it's
  more convenient to have them here. For more discussion,
  see under "Contained Resources" on the Resource Definitions
  topic page       -->
  <!--       for users steeped in v2, each observation roughly corresponds with an
    OBX, and the Diagnostic Report with an ORU_R01 message       -->
    <Observation>
      <id value="r1"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="718-7"/>
          <display value="Hemoglobin [Mass/volume] in Blood"/>
        </coding>
        <text value="Haemoglobin"/>
      </code>
      <valueQuantity>
        <value value="176"/>
        <unit value="g/L"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="g/L"/>
      </valueQuantity>
      <referenceRange>
        <low>
          <value value="135"/>
          <unit value="g/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="g/L"/>
        </low>
        <high>
          <value value="180"/>
          <unit value="g/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="g/L"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r2"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="789-8"/>
          <display value="Erythrocytes [#/volume] in Blood by Automated count"/>
        </coding>
        <text value="Red Cell Count"/>
      </code>
      <valueQuantity>
        <value value="5.9"/>
        <unit value="x10*12/L"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="10*12/L"/>
      </valueQuantity>
      <referenceRange>
        <low>
          <value value="4.2"/>
          <unit value="x10*12/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*12/L"/>
        </low>
        <high>
          <value value="6.0"/>
          <unit value="x10*12/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*12/L"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r3"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="4544-3"/>
          <display value="Hematocrit [Volume Fraction] of Blood by Automated count"/>
        </coding>
        <text value="Haematocrit"/>
      </code>
      <valueQuantity>
        <value value="55"/>
        <unit value="%"/>
      </valueQuantity>
      <interpretation>
        <coding>
          <system value="http://hl7.org/fhir/v2/0078"/>
          <code value="H"/>
        </coding>
      </interpretation>
      <referenceRange>
        <low>
          <value value="38"/>
          <unit value="%"/>
        </low>
        <high>
          <value value="52"/>
          <unit value="%"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r4"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="787-2"/>
          <display value="Erythrocyte mean corpuscular volume [Entitic volume] by Automated count"/>
        </coding>
        <text value="Mean Cell Volume"/>
      </code>
      <valueQuantity>
        <value value="99"/>
        <unit value="fL"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="fL"/>
      </valueQuantity>
      <interpretation>
        <coding>
          <system value="http://hl7.org/fhir/v2/0078"/>
          <code value="H"/>
        </coding>
      </interpretation>
      <referenceRange>
        <low>
          <value value="80"/>
          <unit value="fL"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="fL"/>
        </low>
        <high>
          <value value="98"/>
          <unit value="fL"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="fL"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r5"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="785-6"/>
          <display value="Erythrocyte mean corpuscular hemoglobin [Entitic mass] by Automated count"/>
        </coding>
        <text value="Mean Cell Haemoglobin"/>
      </code>
      <valueQuantity>
        <value value="36"/>
        <unit value="pg"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="pg"/>
      </valueQuantity>
      <interpretation>
        <coding>
          <system value="http://hl7.org/fhir/v2/0078"/>
          <code value="H"/>
        </coding>
      </interpretation>
      <referenceRange>
        <low>
          <value value="27"/>
          <unit value="pg"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="pg"/>
        </low>
        <high>
          <value value="35"/>
          <unit value="pg"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="pg"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r6"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="777-3"/>
          <display value="Platelets [#/volume] in Blood by Automated count"/>
        </coding>
        <text value="Platelet Count"/>
      </code>
      <valueQuantity>
        <value value="444"/>
        <unit value="x10*9/L"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="10*9/L"/>
      </valueQuantity>
      <referenceRange>
        <low>
          <value value="150"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </low>
        <high>
          <value value="450"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r7"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="6690-2"/>
          <display value="Leukocytes [#/volume] in Blood by Automated count"/>
        </coding>
        <text value="White Cell Count"/>
      </code>
      <valueQuantity>
        <value value="4.6"/>
        <unit value="x10*9/L"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="10*9/L"/>
      </valueQuantity>
      <referenceRange>
        <low>
          <value value="4.0"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </low>
        <high>
          <value value="11.0"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r8"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="770-8"/>
          <display value="Neutrophils/100 leukocytes in Blood by Automated count"/>
        </coding>
        <text value="Neutrophils"/>
      </code>
      <valueQuantity>
        <value value="20"/>
        <unit value="%"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="%"/>
      </valueQuantity>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r9"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="751-8"/>
          <display value="Neutrophils [#/volume] in Blood by Automated count"/>
        </coding>
        <text value="Neutrophils"/>
      </code>
      <valueQuantity>
        <value value="0.9"/>
        <unit value="x10*9/L"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="10*9/L"/>
      </valueQuantity>
      <interpretation>
        <coding>
          <system value="http://hl7.org/fhir/v2/0078"/>
          <code value="LL"/>
        </coding>
      </interpretation>
      <referenceRange>
        <low>
          <value value="2.0"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </low>
        <high>
          <value value="7.5"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r10"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="736-9"/>
          <display value="Lymphocytes/100 leukocytes in Blood by Automated count"/>
        </coding>
        <text value="Lymphocytes"/>
      </code>
      <valueQuantity>
        <value value="20"/>
        <unit value="%"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="%"/>
      </valueQuantity>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r11"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="731-0"/>
          <display value="Lymphocytes [#/volume] in Blood by Automated count"/>
        </coding>
        <text value="Lymphocytes"/>
      </code>
      <valueQuantity>
        <value value="0.9"/>
        <unit value="x10*9/L"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="10*9/L"/>
      </valueQuantity>
      <interpretation>
        <coding>
          <system value="http://hl7.org/fhir/v2/0078"/>
          <code value="L"/>
        </coding>
      </interpretation>
      <referenceRange>
        <low>
          <value value="1.1"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </low>
        <high>
          <value value="4.0"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r12"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="5905-5"/>
          <display value="Monocytes/100 leukocytes in Blood by Automated count"/>
        </coding>
        <text value="Monocytes"/>
      </code>
      <valueQuantity>
        <value value="20"/>
        <unit value="%"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="%"/>
      </valueQuantity>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r13"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="742-7"/>
          <display value="Monocytes [#/volume] in Blood by Automated count"/>
        </coding>
        <text value="Monocytes"/>
      </code>
      <valueQuantity>
        <value value="0.9"/>
        <unit value="x10*9/L"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="10*9/L"/>
      </valueQuantity>
      <referenceRange>
        <low>
          <value value="0.2"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </low>
        <high>
          <value value="1.0"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r14"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="713-8"/>
          <display value="Eosinophils/100 leukocytes in Blood by Automated count"/>
        </coding>
        <text value="Eosinophils"/>
      </code>
      <valueQuantity>
        <value value="20"/>
        <unit value="%"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="%"/>
      </valueQuantity>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r15"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="711-2"/>
          <display value="Eosinophils [#/volume] in Blood by Automated count"/>
        </coding>
        <text value="Eosinophils"/>
      </code>
      <valueQuantity>
        <value value="0.92"/>
        <unit value="x10*9/L"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="10*9/L"/>
      </valueQuantity>
      <interpretation>
        <coding>
          <system value="http://hl7.org/fhir/v2/0078"/>
          <code value="HH"/>
        </coding>
      </interpretation>
      <referenceRange>
        <low>
          <value value="0.04"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </low>
        <high>
          <value value="0.40"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r16"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="706-2"/>
          <display value="Basophils/100 leukocytes in Blood by Automated count"/>
        </coding>
        <text value="Basophils"/>
      </code>
      <valueQuantity>
        <value value="20"/>
        <unit value="%"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="%"/>
      </valueQuantity>
    </Observation>
  </contained>
  <contained>
    <Observation>
      <id value="r17"/>
      <status value="final"/>
      <code>
        <coding>
          <system value="http://loinc.org"/>
          <code value="704-7"/>
          <display value="Basophils [#/volume] in Blood by Automated count"/>
        </coding>
        <text value="Basophils"/>
      </code>
      <valueQuantity>
        <value value="0.92"/>
        <unit value="x10*9/L"/>
        <system value="http://unitsofmeasure.org"/>
        <code value="10*9/L"/>
      </valueQuantity>
      <referenceRange>
        <high>
          <value value="0.21"/>
          <unit value="x10*9/L"/>
          <system value="http://unitsofmeasure.org"/>
          <code value="10*9/L"/>
        </high>
      </referenceRange>
    </Observation>
  </contained>
  <extension url="http://hl7.org/fhir/StructureDefinition/diagnosticReport-locationPerformed">
    <valueReference>
      <reference value="Location/example"/>
    </valueReference>
  </extension>
  <identifier>
    <system value="http://acme.com/lab/reports"/>
    <value value="5234342"/>
  </identifier>
  <status value="final"/>
  <category>
    <coding>
      <system value="http://hl7.org/fhir/v2/0074"/>
      <code value="HM"/>
    </coding>
  </category>
<!--       first, various administrative/context stuff       -->
  <code>
    <coding>
      <system value="http://loinc.org"/>
      <code value="58410-2"/>
      <display value="Complete blood count (hemogram) panel - Blood by Automated count"/>
    </coding>
    <coding>
      <code value="CBC"/>
      <display value="MASTER FULL BLOOD COUNT"/>
    </coding>
    <text value="Complete Blood Count"/>
  </code>
  <subject>
    <reference value="Patient/pat2"/>
  </subject>
  <effectiveDateTime value="2011-03-04T08:30:00+11:00"/>
<!--       all this report is final       -->
  <issued value="2011-03-04T11:45:33+11:00"/>
  <performer>
    <reference value="Organization/1832473e-2fe0-452d-abe9-3cdb9879522f"/>
    <display value="Acme Laboratory, Inc"/>
  </performer>
<!--       now the atomic results       -->
  <result>
    <reference value="#r1"/>
  </result>
  <result>
    <reference value="#r2"/>
  </result>
  <result>
    <reference value="#r3"/>
  </result>
  <result>
    <reference value="#r4"/>
  </result>
  <result>
    <reference value="#r5"/>
  </result>
  <result>
    <reference value="#r6"/>
  </result>
  <result>
    <reference value="#r7"/>
  </result>
  <result>
    <reference value="#r8"/>
  </result>
  <result>
    <reference value="#r9"/>
  </result>
  <result>
    <reference value="#r10"/>
  </result>
  <result>
    <reference value="#r11"/>
  </result>
  <result>
    <reference value="#r12"/>
  </result>
  <result>
    <reference value="#r13"/>
  </result>
  <result>
    <reference value="#r14"/>
  </result>
  <result>
    <reference value="#r15"/>
  </result>
  <result>
    <reference value="#r16"/>
  </result>
  <result>
    <reference value="#r17"/>
  </result>
<!--       finally, here's a pdf representation of the same report.
    A consuming application could choose to display either the
  html version above, or the pdf version - they both need to convey the
  same information       -->
  <presentedForm>
    <contentType value="application/pdf"/>
    <language value="en-AU"/>
    <data value="JVBERi0xLjQKJcfsj6IKNSAwIG9iago8PC9MZW5ndGggNiAwIFIvRmlsdGVyIC9GbGF0ZURlY29kZT4+CnN0cmVhbQp4nO1aWW8U
    RxAW2MviXcs32AYfY2OzM4Zp990zr5GiSFFeQCvlIeSJBPIQI8H/f0j3HF01UPbaZn3hYCHVVldVV1V/XX1Mf044EzLh4a8l3p8MP
    g8U54l1wjLrkpOBtqaIP/+tf3oJZm3hfwZZ+PXP4Pfk00AkHzt8rYIFLWzy5e/Bh7Oa3gx48ov//9F7UTAV/lVuYfr9SfLTeHD81i
    VCM66T8QffYWgQiZaJKywzNhmfDP5IH2SaSVFKkz7MOFPSGCk8M9eeds6mM5lkQlln0llg9rKcM1NaVxTpoyyS/WDLaa7Sx0hgLtC
    NYbD27lPNtsZqr5gHTWW8ojTeYS29aG6ZFlzadJgJx3ip0/ms9eDdl0qlcryXOVYa4QUXQAd6WoS4FiITWYcMLHlJbrQ03pFliBaz
    V8BYbVdppVFnqyjYtUx5OFgnceqehN6k8EpPybysx1RsZA2xGVnPstjWsp6TViBRW0GScym1JzUzWjuXbmd5SJnnNskL1A4wZ7I/x
    78OlDZMWQ+a8V8eKNGd3U6I3nrhuCzTJItD6KeBLp0ko9prxfYzY5gxxnqqbQQF3No04nx1UlKWrCyL4PHx2zIpmZMB73njfi79pN
    R1DBWuC82t9Gh3zHDDA1IicxbIHiZb0d4p7aeKqrI4XSuIKnMJqxNFrXF+XkZmH8jHOFiUAT97tGUF3escMMO0bekhkPNR9uHUgwm
    i9XRvRy6SC9R4LpKiKAdLtLMBQFoKJlvE40593K0SsrSMu7K+XPPSBDN5bScXgjXIWyFNof5XgVzDHbSiQ7L9CR7ZroM3CD2UlqdA
    rk9lRp1LdKNmKqvqSlG3P5vOlHZnpxX1H5jPgdyiRLcr3MnSr94ReMgmsrQTdXYbrFU1L290A9iM/Ba5MDES0us9ShShbXiKViu6B
    mibJ6fb7BWjbZ/M1i6QL6hxOTgFo5fAxRag7RDaX14b2kbAPCQDPDfanmFL50bbRWobXj9mv8JQU5wjiQo5FLfZmy5uV1OxLiC6S8
    JtC5Nx2UyvAm9oaiEHUKHbQUa/xds2aX436tBBHUyseRlVyDDe+mTHexRiT6t/3R1RhcI1UnQ+onAVuzU1FKKdz/p0rF5Q9CWgEFW
    6LuCutOrtkLUeiW6fiULk9M6tgtYKQAv30CmnLbY6O0XK7Fo029kp0n632DoirV4jtp4DttCKdI3YQmvnJil6NrY6e74J2HqFx42C
    1iyJgSEFLfr4eje3amh+TvEMMQJkoV3T6DutXupgsEUm4NxbtRG2NHGr1pxCX4NSHpU6VwL0WtWK7pHtnYpG3H8gLVSwYIXskw78S
    FhDW5rrO4TSx4LLYG0Dk8Q2beIJgVHr5zw57GjTD4sXWpFych0D3M0A7m7mfHB8JUviBUQPAHedwUZj1AzNb4Px0f0anBsvCvThDf
    W1jSYlYk6rKKCdzXcWhU1sCa5CJlQClD8etdARiQYTgG0J69Pr1q0B262tBHRRCLXgPg3PXaoFV70ZPSRzcZnN6AXuDfGxGiDUx8x
    IdoDVvQtscBXJmTOy8n8xmLAt0O2u4F4Nzu0vBVd8VqCvdC/zCaFTVM5dCgQFNoQV+srqbu5B70glgAPCfRqc218JDuCWEF2Invql
    Z1q1AHFHZ15+XuDzzgi3T6gQEsX6iUIhWo86gCOuudCF1e1cj+5CiQiV4V4Nyo9QGs76hnKe2qDIwA8pFzayFiWXTTwC2/FbIRJRv
    euTFjapD8J7QetKF7aYlgkjq8eYzgcjuQpb0JbZC89UA3q0rp6pKmVKXT9T1UUhC5HOeQQrxrnzdL9WFE4FWLZ9YIn5zFSvDov03Z
    feQmQvPvRkoZ31AS4F402Xy2BlZXE2yqyuAb/3JAYTPv9Yb12KMu09zdoYUDjIK7DmRfOW7kcuEl2f20DRrCzHRGFXh5l0FT/m3Qd
    qqxeVWiaK+/QXdUneDA9GHbe2fpiqtDAlMEUYTJ8XIXl4pdq2+yD8KUO76gOIZUZIVT0RtoxLLeoyUqsP/Yg56cepwJaq5aU2RWoh
    0Z1MFkwU4S1vtLQBZOVJqYwuApZbpV5WMq6sMOG5lGJWuLLstkcShboXEtjY3Uc05r8Ae8g0sncAoR2GcfLTQIgqdYVfEF2Y6UIxa
    Xl4d0vlZpS1+UghNVkkj4jmV9AnRO7R6ldeJXW40GkdBep11EYpXI3MZlOgNJM6PqWEHnMyyj5Yqj9+fu3TKBpgkTrOdEBzUS2Ysf
    eYjl1MtnZ2M2l47aALuMa7lrrPiWhByeeQKY65kdyMwF8jRYdkD/UCKKQMs8Qwo0whsdYjwE8/zqfHMJ++e+ZFVyFx61ES+exrLRS
    L3NsOr14LxdsPjnhcakOox208ztHh48zwaoCMMGH3x+MJsVFDeWBZRALRSkOmIUYUYmTbigYrTqojSuMBmuCHWVGUHo/B+Z/Hgzf+
    7z/+ARl4ZW5kc3RyZWFtCmVuZG9iago2IDAgb2JqCjE4MzEKZW5kb2JqCjQgMCBvYmoKPDwvVHlwZS9QYWdlL01lZGlhQm94IFswI
    DAgNTk1IDg0Ml0KL1JvdGF0ZSAwL1BhcmVudCAzIDAgUgovUmVzb3VyY2VzPDwvUHJvY1NldFsvUERGIC9UZXh0XQovRm9udCAxMy
    AwIFIKPj4KL0NvbnRlbnRzIDUgMCBSCj4+CmVuZG9iagozIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbCjQgMCBSCl0gL0N
    vdW50IDEKPj4KZW5kb2JqCjEgMCBvYmoKPDwvVHlwZSAvQ2F0YWxvZyAvUGFnZXMgMyAwIFIKL01ldGFkYXRhIDIwIDAgUgo+Pgpl
    bmRvYmoKMTMgMCBvYmoKPDwvUjcKNyAwIFIvUjkKOSAwIFIvUjExCjExIDAgUj4+CmVuZG9iagoxNyAwIG9iago8PC9GaWx0ZXIvR
    mxhdGVEZWNvZGUvTGVuZ3RoIDMzNj4+c3RyZWFtCnicXZI9boNAEEZ7TsENmFlg15asaZzGRaIoyQXwMlgUBoRxkdtnfkKKFM/S8+
    7C97FTnS8vl2ncyup9nfMnb+UwTv3Kj/m5Zi6vfBunAkPZj3n7NfvN924pqvNrt3x9L1zKBh7c37o7Vx+Y7B/0M3nu+bF0mdduunF
    xAqDTMFDBU/9vKRz9xHXYtyI50NQkGsiBJqjW5EAA1YYcaG21JQdiqxrJgWSbEzkQB9UDOZDs7JEcSI1qRw7EqHolB9qkmsmBeFTt
    yYGYVZkcCKw6kAONpkL5FoqoxkDpita31UehdEXr22oMlK7ofQ+q0hWtYNOrSjm0gnWnKuXQMtfaCCUvWuZgT5a8aJmTfliUvGiZk
    6WSvGiZo71X8qJlDvoi+diGrKKq5A0Wsga71P329H51UPa5KPNzXXnabJpsWnRKxon/Bm6ZFz1VCsUPQ2yt1wplbmRzdHJlYW0KZW
    5kb2JqCjcgMCBvYmoKPDwvQmFzZUZvbnQvUVRQSk9aK1RpbWVzTmV3Um9tYW4sQm9sZC9Gb250RGVzY3JpcHRvciA4IDAgUi9Ub1V
    uaWNvZGUgMTcgMCBSL1R5cGUvRm9udAovRmlyc3RDaGFyIDEvTGFzdENoYXIgMzQvV2lkdGhzWyA3MjIgNjY3IDI1MCA3MjIgNDQ0
    IDU1NiA1MDAgNDQ0IDMzMyAzMzMgMTAwMCAyNzggMjc4IDI1MCA2NjcKNzc4IDcyMiA2NjcgMzMzIDk0NCA3MjIgMzMzIDUwMCA1M
    DAgNTAwIDUwMCAzMzMgMzg5IDU1NiA1NTYgMzMzCjUwMCA1MDAgNTAwXQovU3VidHlwZS9UcnVlVHlwZT4+CmVuZG9iagoxOCAwIG
    9iago8PC9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoIDQ2Mz4+c3RyZWFtCnicXdMxbtwwFATQfk+hGyz/p0StAYON07hIECS5gJa
    iDBXWCvK6yO0zM8ymSDGGx5Ko/0Tz/PL65XVb7935+3ErP+u9W9ZtPurH7fMotbvWt3U7mXfzWu5/m36W92k/nV++Tvuv33vtcENd
    Wv82vdfzD7voL9aeKbe5fuxTqce0vdXTcwj5eVnyqW7zf5eG0J64Lo9bLbeEoc+onltCGlgjfu1Zx8g65JbggTXlljDo5jG3hFRZL
    7klpCfWp9wShsQ65ZaQjPWaW0IqrCW3hFErz7klDM5ac0tIWmrJLWHkVQOewVXObMCZgGlkBc4E7C+sADK4OrPCavKmhRVWkzdpZV
    hNXtdVWE3enjMbrCZvpMhgNXmj3guryRs5s8Fq8kYNCavJG+k1WE1e11SwmrxRM8Nq8kbuArZCwZDcQYfV5e25ssPq8o581mF1eX1
    ihdXljQQ6rN72lzvosLq8kTvosLq8US+C1eX1KyusLm/PmbG8gvdqSFhd3kEVVpd34MeBUgFBQ8Lq8vYaA1aX1/lxgFawMqfCx1Zw
    s67CGtv+UoSvq2DmovPw+Mfn0eAZexyprnweR93uOog6aDxg61b/ndX9tvOpDjn9AYLj8YQKZW5kc3RyZWFtCmVuZG9iago5IDAgb
    2JqCjw8L0Jhc2VGb250L1JBQllLWStDb3VyaWVyTmV3L0ZvbnREZXNjcmlwdG9yIDEwIDAgUi9Ub1VuaWNvZGUgMTggMCBSL1R5cG
    UvRm9udAovRmlyc3RDaGFyIDEvTGFzdENoYXIgNTEvV2lkdGhzWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA
    2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAg
    NjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwC
    jYwMCA2MDAgNjAwIDYwMF0KL1N1YnR5cGUvVHJ1ZVR5cGU+PgplbmRvYmoKMTkgMCBvYmoKPDwvRmlsdGVyL0ZsYXRlRGVjb2RlL0
    xlbmd0aCA0MzA+PnN0cmVhbQp4nF2TwW7bMBBE7/oK/YG5K4qygYCX5JJDgqLtD8gUFehgWZDtQ/6+s7N1Dz2M4DG5q3ki9/D6/va
    +Lvf28GO/ll/13s7LOu31dn3spbbn+rWsjWg7LeX+1/FZLuPWHF4/xu3391ZbbKiz+8/xUg8/5cR/xGvKdaq3bSx1H9ev2ryEkF/m
    OTd1nf5bitErzvNzq2RXiJJhNbtC6sx22RXSZDZmV0i92T67ggazKbtCLGYH/DxyMzufsiuk2eyYXWFQs+fsCkM0W7IrDCezU3YFZ
    eeaXSFydc6ukCqsAN6EWkMQwAkBk20WwIkDDmYBJw5o7xXACQG70SzghICRq4ATAvbGKwA0ofZoFqzivBZSwCrkjYwBViFvNF4Bq5
    C3pwWrOC87g1XIm5JZsAp5e2YGq5BXjRffnkJnOxQFq/qB2ndWsCp5e8NXsCp5eyNSsCp51RAUrOonaMetgFNm7iykIq8ys7IV8qp
    n5nuRV/2MWIu8ypCdEeFBYdVSdQjYMWRnrdCegj3y1j6vp11gm4TnxW/LY9/reue4cBxsDJa1/puo7bpZVQs1fwB74N5qCmVuZHN0
    cmVhbQplbmRvYmoKMTEgMCBvYmoKPDwvQmFzZUZvbnQvRk9SS0VWK1RpbWVzTmV3Um9tYW4vRm9udERlc2NyaXB0b3IgMTIgMCBSL
    1RvVW5pY29kZSAxOSAwIFIvVHlwZS9Gb250Ci9GaXJzdENoYXIgMS9MYXN0Q2hhciA1MC9XaWR0aHNbIDcyMiA0NDQgNzc4IDQ0NC
    AyNTAgNjExIDQ0NCA1MDAgNTAwIDMzMyAyNzggNTAwIDI1MCAzMzMgNTAwCjM4OSAyNzggNTAwIDUwMCAyNzggNzIyIDU1NiA1MDA
    gMjc4IDY2NyA2NjcgNjY3IDUwMCAzMzMgOTQ0IDI1MAo2MTEgNzIyIDcyMiA2MTEgMzMzIDg4OSA3MjIgNTAwIDUwMCA1MDAgNTAw
    IDMzMyA1MDAgMzMzIDUwMCA1MDAKMjc4IDUwMCA1MDBdCi9TdWJ0eXBlL1RydWVUeXBlPj4KZW5kb2JqCjggMCBvYmoKPDwvVHlwZ
    S9Gb250RGVzY3JpcHRvci9Gb250TmFtZS9RVFBKT1orVGltZXNOZXdSb21hbixCb2xkL0ZvbnRCQm94WzAgLTIxMyA5OTEgNjc3XS
    9GbGFncyA0Ci9Bc2NlbnQgNjc3Ci9DYXBIZWlnaHQgNjc3Ci9EZXNjZW50IC0yMTMKL0l0YWxpY0FuZ2xlIDAKL1N0ZW1WIDE0OAo
    vTWlzc2luZ1dpZHRoIDc3NwovWEhlaWdodCA0NzAKL0ZvbnRGaWxlMiAxNCAwIFI+PgplbmRvYmoKMTQgMCBvYmoKPDwvRmlsdGVy
    L0ZsYXRlRGVjb2RlCi9MZW5ndGgxIDI5ODIwL0xlbmd0aCAxNjU4Nz4+c3RyZWFtCnic7b15fFTVFTh+733vzb682fd9yWQmySQzk
    5WQeSEJeyAgYIJMCatsSgKIxY3ghuICdUERW9G6VdsymSAMUGuqVm1rC61tpa0VrLRVa4S2SFslM99z3wTEtp9+vp/fP7/P5/thLu
    eeu5x3l3PPPefc+x6AMEJIjQYQg7pmXhZPIPG3bgVE85ZctaivlO8bRgjftGTjBm/f3/46DwreQUgWXt535VUrvIs+R0jOIsT97co
    1m5aX6P0DCCXvXbFs0dJ3F/5QQGhDOxTWrYACA2u+ASHNPyEfXHHVhq+O9UfbX7pm7ZJFpfw8HiF79qpFX+0z72CBRuuEQu/Vi65a
    NkYPbaJw39r1G0r5DUFa37duWd/qq8ctAPpmhAyt3L3Iw00Xwck8gBwIFd8DOAnwQWFq8Ry3GgUKq4onGAP0HizB2C+EbkVB9AHai
    V5CGfQTwqAOXIW6EYutyIYIbkTTMI8siMMKFEEBNA11IROaiv6I1WgvqkEf4YloCw6hmehR5EczkBm1oq+hPXhS8UO0Bb2FV6Ln4e
    lnsYDK0HQ8uXgczUJdxQPQB0Lj0EPoEaxBHqhR4EDxXWhhPdqKDqFfoyKajx7m9kArXWg2urp4AC1AP8fz8RVFJ5qCrkY3oYfR4+h
    FdBLfgYdZrtiLatFitA5LsQFHmJuLz6IG7pj8heKrxaOIB/rHodWPSYydWPwECegDFhdXgCQYUBLC1egJtB+9g624lmlDGpSCvjLo
    BrSXicAYJ6M7YW6H8PV4L6MpPgmzqUdL0GZ0An8VDxMfd4w7XbwO6WF+KRjpNvQk+gF6Bf0FWpuI5zBXFdLFGQgjGYqhDujpVnQ7+
    i5w7mUIr2It9uEp0PIP8Lv4PeZq5k/Q8jNoBJ1F/8QRvBLfRNLkZi4xuqX4AgrDDAVoYwq6HK1B38ZhLOAr4NlHybXkJrKZ2c+8w0
    bYU8WG4itIguJAezN6Dub1M/QWehvWayLuxL8mNzFD3O3F62G8cbQCZnEregodRJ9iDsuxChuxFydxPczsejyM3yMuEiDdzGJmL3d
    3cVPxHuQDWcmgZfDkKnQLug0dQEfQH9Bf0Ai2w5NxeDKNu/A9eDt+lRxhLmcWMDtZgd3JPs++zJ7jdNzLhZ8XTgDXaTvVqBNCBi1H
    1wGv8xBeQb/FDHZgN7Q0Hk+Flhbi5fgGvAM/iL+Jn8b78ev4KP4Qn8L/IlZyN3mAHCY/JEfIUcbFRJl25jHmTdbH/pb9XLpo1FV4q
    XCqqCzGisnijuKjxd8VR8RVcILEp1EbSNdq0AW3oh3oQfR14Pk+9FP0K5C742I4iU7DGnyOJSBNNhiRHwdwGa6A2V2Ou/G1eBu+Hz
    +JX8Pv4ZP4HEFERfwQoqSOTCULyM3kY3KOUTABppX5KvMQ8wvmM3YTl4DwPPcCd1pyUhqSvXlu9+i7BVRYWdhZ2F2sBVmUgOQZYM+
    l0ASQuamwyktRP4R1aCO6Fnh0HXD8UZCcvSiHDqM30JvA+yPod6Ch6Hhp+BBW4gwaRQVMYD05LINQGns1rEwbSEsvXgZrWwrX45vx
    nfhhCLvxN/DjwN+f41/gt/Bx/D7+FOaESCVpJZNgRl3kCpKBsJAsIVvIXWQfhJ+RX5PfkT+Qzxie0TEepozpYK5k7mC2MVlmH/NL5
    ldsmG1lJ7Or2dfZn8PMJ3NTuIXcEu4u7nHum9zL3I+5k1xRcr/kCUle8oFUIa2TdknnSO+Ufkt6WPqOtCgrA3nqhNGXoy9+9+Mr2D
    jZgYskD/P+PtnA/IQ8gJ+/iAJx22AES9FCkmdeJF+/YQfzB+bb5GaE2HaxejxosTfR99Cb3FusifsAvU7s6BPQhw8wi8j3yS5ixXX
    MOPY29k3QOptgnN8kx4mU7AWKv8BqLERzsQ39jZ2HTgH/j3DbgKcTybv4efIamQqSfAw9SQ6jXWgPWobrYXRL0QvoM/Q1fJDx4v0g
    d5vRUfQxOvHFaNn46ASSlljJRkkTrNBBPKv4Oikv/gV2/Xv4NvQ75jOQ/Xl4Bo6jp9H7sOq/winsYQusA/0cNJ8b7Qap/TMagj34Y
    zYIO+hTdJBJofnsCVjz+OiPCu3cBuYWfJa0wnJaRM09k2pj0MEPg66ielSD9oIkgBYRd/Rf0E+xH7j4luS36BG0HR1iTCjEPEUGSJ
    F5g/Wi+9AJZjr0eiPoJydOQUtXoZUwD2/xT4UnoYVVqAE14MV4PmqHmsnIXbwKRv406CKhuKC4i+vhYuhneDo2oZdAe1mBizs5eWE
    EKPfBPvwdmozvQkOFpWgY7IoVh3ACpGmE28jt4J7j9nHf534qqUFfhV27G1bxD+gMWA0vXgK8+Aj9A2R9AuyeCtg/rTCKyWDD1pAe
    5kXUhu2oD3RgBPT2BODBfFjJ9dDKzehu2E9PgQ35GTqNebwAfR8dg51jgX2+BPqXQTvT0FxY9fXoadCOt+AhKFmK3CgKfPoMa3AD2
    QD9UT27E/TsMIzpHfQn0BxFcVwVeBxuh9Vbgv5B9zL0UIe68CDY5P2oESxlO/Mm+iMKgnWdAHv0SXiuF2RDg1yokXsfE1RRmFFsIC
    uZF7EZrKEGpGoOWPbxuB9GoYV5jCITnolqC5OgtedBl3VxT4H1jYFlMBETezk3F8b9W7BkP0Prit34ESnsAGHC3DlCumV887imxob
    62lQyUVMdr6qsiEXLI2XhUDDg93k9bpfTYbdZLWaT0aDX8VqNWqVUyGVSCccyBKOKjsDEXm823Jtlw4HJkytpPrAIChZdVNCb9ULR
    xC/TZL29Ipn3y5QCUC7/N0qhRClcoMS8txk1V1Z4OwLe7E/bA948nj+rG9L3tAd6vNkRMd0ppneIaTWkfT54wNthXdHuzeJeb0d24
    sYV2zp626G5QaWiLdC2TFFZgQYVSkgqIZW1BPoGsaUFiwli6WgaJEimhkFl7YH2jqwt0E5HkGVCHYuWZrtmdXe0O3y+nsqKLG5bEl
    icRYEJWW1MJEFtYjdZSVtWKnbjXUlng+7yDlYMb7s7z6PFvTHV0sDSRQu6s8yiHtqHLgb9tmct1520fpGFxvVt3VsvrnUw2zqsK70
    0u23bVm92z6zui2t9NO7pgTbgWRKa2LttInR9NzBx2mVe6I3c1tOdxbdBl146Ezqr0vyWBTpoSe8qb1YemBBYsW1VLyyNfVsWzd7k
    y9ntwsHiCWTv8G6b0x3wZdOOQM+iduegEW2bvWnIJnhtX66prBjkdSXGDmq0YwmV+uLEsgt1Ykokp6lpsy9wFtMRBaaAQGS9S7wwk
    u4AzKmBRssa0LYlDUAGvx4MT2WXwoqszMrberfxTbScPp/lQnzAu+1TBBIQGPn4yyWLxkokIf5TRJNUTi6IGtSfT2djsWw0SkVE2g
    ZrCmNsEfO1lRUb8+SxQB/vBQTsQ13A20U9TXFgv89HF/iuvIAWQyY7MKu7lPeixY4cEuKxnizppTXD52tMc2nNwPmaC4/3BkCS9yF
    6gjFlZeELf7S82dCxoimLzf+jelmpftplgWmz5nd7O7b1jvF22pwv5Ur1DRfqxlJZQ1s34yBjKeJgxFoQygUXiGmmW5VlQ/BHIgr1
    0rxUBlIplmDvxCzfO7kU9yh8vv/Lh/LF0/QpEX3x2Ngws02xL+fHfSn/peGptjEwYDZMps2Zv22b4kt1E0EDbds2MeCduK1326J8c
    WBxwMsHth0Ef6ZsW19H7/kVzRcP3eXITry7ByaxAjeBtBI0YTCA75g1KOA7LpvffRAOct475nTnCCZtvRN6BoNQ133QC0pXLCUXSm
    nOS3NwsgJJzxGZWOU4CEe9AbGWFQvE/JI8RmKZ7HwZRkvypFTGi2Xwoxu9bU73xUso7oueShAJEAupr9CBLufR53d+dpwXS77066E
    l6svR31Az2HwJ+Ao8nA7g9Cu7q1hEHCKDc7x5VjWk0iQozhksiTyrHIp4PdpWntWjAQCCtBCnARYCMGKMkcDqc19NCnlA60ro6hJa
    VUJzksL3gHAqShaHWf2QxZqgxUMKVWKAYpmc5nW5+UmhVc7qYEiUTocuK+FcV1Ks7qSt6NCkUulQe0fpqQml4pYx4qakpzUIeS+AA
    NAHsBfgNIAERq9DcYAdAEUAVsxRus0A2wH2AJygtGJrsqS21cHyUMOLc+eRByAOwKBeVg5zz4qxlpUBV2RoJsBjrBSxrCKH1ngOQi
    PMUIc4UmYoViXiXKQ8IVbk7M7Ei2Btd8Gh0gMFOGd2iDUoN2HCWKKuoZQYilYmjrcqWIROARAWTu7g6ohPDUWqEqdfgjxmCkiLMS1
    lzg3xRuiNGR3SGhJCK8/8C3UBEJRlBtEwAEFrmU/RZgAC5HtzlTW0I2bvkEKT4IH+FPICDAAwaA/EWMwLAJT+1JDBTJv/c06rE587
    nqtOlRJDvDXR1Wpk3oHx/Ij5BQogD7jnvwCHysO8DtgF+DXmDaQWx/nkkJZPDEB/3wTybzKbUDlUP8VchxKAn2VuAl+Ikv0mpyn18
    5tcJJpoVTDPMDeIJOuZfnAFPcwaZnUu4fEeZp6k8sh8PCRX0vF9nONNiReZD5nVyAhUJ4HK4tG+yFyN4gB0JvkhuTqxo1XF5GGaeW
    CLB8aI0WNiLDC/yEFD0N+3mAFwuzzMEWYLuNce5jnm5pzJM3yY+YdIdpa2Av09ARJD0ZBakxhulTNPUAlh/gYc/5vY25mhcEMCtYa
    Zu1E1AAGmvg+p9+lmZD6B1CewTJ/A0nwCS/MJjOITEFrEjEDNCNDEmXdRH/M7tAPgMUiz0OSmHHDwoJgIRhIHmRuZG4AT/GHgHYbS
    m4bkGjqyG3J6g0h2A93g6ReZt9FMAAKDP0Z35NrDzL3iVHYMWR30gV/m5Cpg3fWltYAHr6Nr8CIzwNwscmKLyIHs9yEL8s/cIj5cH
    FLpEpth9edAdi3E2wGOApwCYIFsDsxhDloIwAB515BGm9AeZuaLD0/JaZKeF5nJMPXJIrcm50x+ccyTxhKsNudwJ75PE6gStFmC1b
    CSXNwz6zAzDeRnJjMjt9QDY5+Vg3bpgzOGGpoS1YeZGSIvZuQ8gVJxzmATExNz8pJctQ0pdHQk7SJhLCfTiMWxsS3JRIeMloQH5LR
    JnG2S6lKmHpavHpamHvZJUlyMxBCvB+lfyiTEGSVQL8AegCwAC2ucAPIErHECjlgJkSN1MN06VARgYG3r0GkAUDVMDUoDbAd4CeAE
    ACeW9gIQKK+GHnoh3gFAoMU45HmIBYBegAGAPQDDAKcBpOgIUwn9VAJ1NcQDAFmA4wAsrFUFjKMC6vSMF43KEPKgzWSX0IQ3o814M
    9nMbGY3c5v5zTqZUBuqSAiraFRFowhE9b3yPvmAnKmWC/IuOcPLvXKSLw7npE1JQIJe0pT8bedHnZ91Mvr6HZIdUnKkVYV16DjAKQ
    AGHYED0nGAU5gXtjJHWo63nGphjnQe7zzVyRx59/i7p95ljlQerzxVyQidjqZE/UK8Fm/G2zHrwXGcxjMxu5BZy2xmtjOsh4kzaZA
    FtlfZpxxQMtVKQdmlZHilV0l2KPcos8ph5VEll5UMS45KTkhOS7guSa+kTzIg2SHZI5F4pHFpWipI2NOtbeR3wNQ9EGcBCBqAeIeY
    4sWaYYiPivkdYr4X4j4xL0DcJaYCEFfTFEAA2vot0A1AvAOA0tF8AOJqmgcIgHb/DZT1QbwDgJDfCE5/dVAIEj7oDRI4Sp4O4qPBE
    0GSDQ4HyXBrEzkmjvIYjPKYOMpj8OQxse9j0C6kAAIw2rdFureB7m2R7m2go6n/VtYLcZ+YEiDuElMBiKtpirydC9RrWy1kN7S4EO
    LHAI4DMCgOcRpgrZjzUAqyG2KBPDJUVgEGnzySC4OOBOQvIXcJOUU0ZLMnFrZqySPQ5CPQ5CPQCM15ANI0Vxwmu3LtlHZXbnwJNSW
    Pt9aDFaVD2YX2AhA0E+LHxFQc4rSY2ivSaC/ksxCfEFN9EO+58NxCMeWB+PyzDHkEwi5Iacl1UHqdoCTIbAanSq+T6fPkUG6l3pMn
    +3IRHtBQCeUoajUQBnivxp+I8XfF+DExfkCMLxdjraAMqP8VUP8woH4moG5VkKkoCMWnxfhDMV4laILqD4Lq14LqbwbVTwTVh/H7y
    A8VPsHuV//Rr/69X33Ar37Or77fr17gV8/yq6f7aVMR5EVq4qIx/ooYOwWLV33Oq37Pq/6JV/2GV/24V93jVTd5gRz/DeypGj8qxg
    +Jce2BlNqTUrtS6kMENBO+IqdF8sOE4CuQmlHkoi2ePCMXEfHlOkOAnLnOVkCOXOdsQPZc5zpAhlzn/Z5WOdHiQXBWPESDB2UUq3L
    RLVCtLCFZLvoVQFwu2ujJ40IuGgD0eW65C9BnueVuQGdzy1OAPqXoe/jvaDmBZvBfc8u/Ac3jj1CENov/jMLkecD5XGcaqA+Uesf7
    UAsOQTEczego8LdzURgcfjYXjQB6JhcNAnq6hL6Zi3oAPZ5bXgXoG7nl9wP6em75SUCP5CJraHu7UERs52EUFvH6XKcDqvtznbSFv
    lxnHNDaXGctoNW5lp8CWplrOUkfvRIPYpBsvBxFxZEuyi2PQvXCsYlkUESsXoBqxZYn5TopSybSRlrVuGNsIu24jfp8eAIeFFsRct
    FqIGvJRcOAxpc415xbHgPUkIsAj3F9LvIN4FzdWAfldH2+h4MwDNpQIBd9Hog8ueXlgNy55R2AHPRJGJRhrFc9ahEHpctFKRWfi3o
    938dKtFxsUYHC+JH9nlFo9/OWPJ6X83wm5GU45/lHBNB+z8ediz1/6cyDx+v5CLbw8/s9x4H03RZICkrPO9GTnt8t93t+HAUKweH5
    UbTK80p4kycfOewZ6nR7BmFg2eWLPXuXiy18NwyP5TzPRvIEw9N7lk/3PByNeR4K5+kY7gPirbQPaOi26CbPzeEtnmtAFDZ03ulZH
    3V5+iJf8ayK0I4snpXR2Z4VMJEr4Zlly6/0LIre7+mtFUf8lehPPZfVinOYtlyc0ZQWsWLy8tmeiTACqEjTChjBOJDLBDxaVXuY8g
    g8lbahn3rm1n+PgBXGAwDrhCrpi9KbpIulc6QTwN6USUNSn9QtNcr0Ml6mkalkCplMJpGxMiJDMkSM+eIJIUaPdEaJeLKTsDRmxTR
    PaExKZ0CCZQQOWlkDM41Mu2xCtj42LS8tzs42xKZlZV1XdA9ifG8PnpYdXoKmLfZmz14WyGMFnKS5wASc1U9D0+ZMsAJxltwBR9I5
    3XlcpE/c5qDXUwcRxhW33eOgeOJt9/T0IPPGtDWtb9E1Tmz/L1HvWNzRHvviZ43FvpRzZXdOu6w7+5yrJ5ugiaKrZ1q2nF5hHSRry
    KqO9oNkNUU93QfxCrKmYzYtxyvae4BsnEiGWshqIEOdFAEZWYBaKBmUL7iIDA9CcftgS0uJaCYepESwaWaKRPNLRG0XEzF34TaRqI
    25SyT6RqnDKIwDOhQoAjJuDYqKHUa5NSKZlZINhsPQ0vIwJRlMhIFgMJwQq2d9UR0pVX+nVP0dWp3H+Iv62nBptBEUFnsIkwjQxP5
    //C2b8P/hITw0fuPV3fTqsTfQsQygN3vXxhXW7MBir3fw6o1jd5Lh3sVLVlC8aFl2Y2BZe/bqQLt3cHz3f6nuptXjA+2DqLtjTvdg
    t7CsPTdeGN8RWNTeMzRjS0P/l/q680JfDVv+S2NbaGMNtK8Z/f+lup9Wz6B99dO++mlfM4QZYl/TZk/A07q6B2VoQk/bghIeIkoF7
    JZeh69ngpnvaxG3zjif9SbHIRbhZ5Ey1pNVBSZk1QC0qrK1spVWwZamVRp6vTxWZb1pnM9xCD87VsVDsS4wAW2wdqxshz/r4bdhwz
    XwAx6vX1/itbVUsSHWIdYDwQZIbRB/QAlpCuvF0rH6DeiaL36xWIkWrY+1dQ92dnZYV7Y7wIkfon53rGc9isVKHcZiCPqEWYuOvll
    09JUSc/JXnX/s/LSTGRY9/KMAJ0QPfxi8+6MAJ8DDdzPDLUdbTrQww51HO08A7btH3z3xLjNcebTyRCVTPzYC2lUPhhF+Ea6Jrb+G
    FsewOFtx3nQgMGhI0FmfZ8N6sWKDyBj4lcrFR2PQUOzC47EvEutLldeIj5RK138hw1BBm99wTew/f2Ol9JaNYCdCnJOD4yEcuSbsI
    /gViTTPyAQD4thXGKSQsq9gZJNJuFcI8z3ciuQ4hOcha4w/2zzaPIM/09w52ozSkObPQVRT7dP5dCGIsJNF57zM8DmBQ58jL0s/MU
    GzC8vJfdxqpEddQmSr5oCW1LMPkwfkz5Kn5Bx+GTGql9UGtUoFtNVGrZSebRhpnjwoyAUe8/MMa3fSjjMjGeidh4DSI+mRmmqUwRl
    skkgh6Hi9xWwxhZGOR+S+FTXt4erLp6Uyfy0M4hnc6qr21vn37C28VjhWyC+bWJuYhf8ODomA6Vt4G4ytRxzbbMFfx27l7tDmtexO
    skv+NPmWnIXRGWB0wCVe6h0blW4mHZUR7ItKpa42zL4TRndGHJg4yItGZ6itq4eg40lZuKzWTEdnW1HTVlYaHJ5ZGCwsr+ponX93F
    jfhCJ4kDq6gLnyv8IMC/TwGJfBasom0wCrZBRWczZCdwzb2O/dYYzP4k/yfULwTesK+Wh/ZNHqQTMJrj9Cn5hf/jJ/BKaRE/n1oik
    TJ5LFBUHrl1XIit6nW3kmfPpfpHEF0nDhhNhklAX+4NlWH0cRFizs6Fi3CKRF1dCwGWUFTiyeZF7gV9I0enirY5A6JRxKSl1ukVof
    JawpZy+VSGb5W5gIjndNzZYCGJGq9Jc8ohBASguEUEmJVECXrIBo3PiWgLrSHzqlSr/V7/MRPKTXb1VgtGEwpta3i07/SIZ6Nresc
    ybR1Cxa/ECxL+WkjftqInzay1o/7qTj3AKGY6Byhxt8COgCILVQXAL2I4RGKX4Cnei1jT42tUtsmYTGOen0eH5FoNbyGSIKBUIBIl
    CqFSq6SqViJyWw0E4nNarc6rIyEYAazmJFEY+UxInHr/ItRWAqR02BZjCMcRD6NazEOqMoWI6sZUjEMKdG60Cg69tuC+nE/Nko1BB
    gPsgHMr6+rSybMFjPH03zAL5WAVFvM5mQCRIh5odG//r55i78xvsIXa0ke3bDxp9VthTdZRdjWELOF7EZtQ1XCFpWQp3+SXbNt1tJ
    Me/+ub/7+4K5vPn7H4Xfw0nF31XitgcHRU4UTiydVexuuoVKyFTb/ElhVC7rle0iDv4NrkQw/td+/ULpWSjD47rREiv8FRz8zfgpO
    VP9AJigxEyJotDLEyaQqKPRgguFgJfAaTZd2rXavluG1WGuzar4Pvp6MvIasxIKPi5rjJOiNTKa5kx/NUN2R1jd+OnIOfxrDmRiIo
    c4Ic02afLXJRF1drS4VpjwoC5Hd5omdntG64OVT7foab3KKHv+dW/H58zd2VIRCkYkD5KWvxH3e4Elxt8CMHoUZOdEHQvAO8l3ybY
    YpUz3IEIVSocSIc+j3mPeZidlJYEwKpcyZx7379XFL1kIseezPYb2MiotSnZLlmeA+DYdVsHXOCA7E8Rzh3tG/pXXil5zYaXdrMX4
    JY2xzHcLdeAcS92OmH/Z/f+eZ0cxJlE6PUKMjGGSCWZ2WCRYNRDYtROpGUf6ACW0LxuQVKEQ5BSIRO3gR55y6tEh7UtfYqNM3YoCM
    rlHfCFn+R8CyDMr4fLVIX5sSeSUKEGxmqQT7gIf1Sabr3B/w2q/f/JVH5obq3tlx5XO9U5cVvo1Da1qj/qAZv4Crdqy86xH1cL73m
    Sm33Xmw8II+1kH56Cu+z2wDPsbQEcEj1Vq0K2KbYreZbjPvNjxo/pb+afMhg7LSmXYSowznMahphOiLB+RTwtmrF44CPvImOIE/Q3
    Ykg+modSmRr3oTYPKz/YKGs6uREc7a+7wYc4pD+EGkxPb97hKbQRkc0L2FyvlyUk4Vg05rwRZ7pdaN3VQ9uG0VF/E8BjzvBy1xBoz
    DmVFdY9xmH2lG1nTaPhKL8aMn+ZP6xnhmRN9YYheubSEXcws0n5SyDPn8dA9Ckbjj6oAGx9d1C5vm3704NPm9bfccmHvFNdcXfloo
    fHtm44SYz8W/MnfqqmHybMDXeE3zZdc+oH7m2W+vn3ZXbeMzN/2y8HZjJF3VqpE9ds38O/8MjEmCXH4H+KlAarRLsKbVOIkxg1gil
    Ss4mVqFWJlarVTm8QKBR9gIS6BEWCpTqjGLDuNziEMKwgsqGeZkKjWCsxeRHWbk0LAU9wrWOJtmiZb1sIS1axFlEbJpShr0JDWbmc
    4zzeKOS4OVOtsMwkMFSd+4tSrG3si/qtVqS7wx4KQuaQqAIffV+3RJcut1N9xQGCmYFuFtuMisPPfQkcJRXH2EWEBCOsAiDHHTkR9
    3CVUaCZYrbIoIijCsUWFymJxMg2SK5ADHKDlsdyicrIuH2MViO8swpVn6YZZ+0P4Y+XnRAMj36RGL2Tw+tV/vZV5iCBD6h+D0aIcD
    sqDQGjwGYnhHpSZ58sYQ/rkMHSYS5Ecu/KlgF2Rdsj0yRmYP8j/f7sd+ygO/LVDiwRmwIidBSEbAYJ6BjTmSGQG/hW4+wcgIsMUYA
    fYbQ3coQ/equOMK/eLmZEFqgYId25Ts2CYVMZBSnDOqxEdiPSMZ+pDg9tNG/bRRP23UTxv1C0DmF/TKEm2sZytXFQPmI53eQpfDAv
    KJ+jN4XaYf+xiflKVfvEjYwHmpBLtgKcll0OeX4gZy/bLRj5K459CuewuFR57uaWmNlXUtGl/hKZu9vrCncMZRx00vFLaqH7vllRt
    PbWmpaIhN8LZHedVX52TfoafwveAhnGNeBg/BghIHkQ2cYpvekJJMQVLVFL1Sy0yRV7xkwiab9dgRkYkgRKPn/S6waRf5DIaL/Yd5
    otOwaFH7mB/BvLyo5EcsGl33hUfBgGZBnAbkx4GCqAbPFb72sAXrlzk2ko3Vz1ifrzjkPlTxpvSdyn/FFRHcgCfjKY65pMexjNxOb
    q1+Fr9e8cuKP7k/8J91/9P/z2rdZFk45AwGyzRel9zv13pdRn+gOuRmgqjKW10TRSF3ELxdudFZFQrJjcEqk8lIolUymVyGvLyXeN
    +1fV3P2pPBGm2Zp4yUVWo1tkQyj9kh3/huayw2gzq7GTBeZzvbuvejKr6KVHV+mHEMVnWO9Jyh/l4zP0IBdlV8xEZjcX+NaWxYW2h
    Eymuam5tFfyMRq/QFzFZOagn5w5aQJFwRCpi9ceynUUxaFcc+a5BGASgLVHLROEIxvnnMg6C/LfCj7iUVN/111R9WknBFrLrR31Nx
    e8WvpRJa1QOR2SIaAzARFyxqrU+0EBKOlkCBVKeTGs3JsRyz/Qcz+q5/qHBidOZX2hyO9gzZ9uHLffeOvnfv1smTbr0P19d1bZ3c/
    Qg5Uilc8bVdSzeFAg1XM31XN/pDlz2VWbxLL2yYP399Mx59tNCZqKuftPWyhQ81U3syq/gedzn42EHsOojMxYEhuSLlzJewZAyrAQ
    s9kFDZ5Y46Q6f9dvNd9u2OO52y1brV+k26Tfo7dc9InlU/ZXnd8hOHQmJG4TZzq3PAfJvldsetzgPsYbciHl7huVayUb3RcbvhkFZ
    ar9Hpgy40n7gwmCmjAEnft3R6DbfKxWhWmeR4YVyHdfa+MA7rQ1cfxAnRpIC/KdcqPAqi6LTZztCFHiqlRsDTzJzNdJ4UtwGo0Y/P
    jGB+5MwIosZ42mWbBhMyWN6g2SlRq2BhZXKpnEgcYbVZEUISJ0RKqyaE5HYuhEuLGaVLiTP9CHa96CLqAtTrgfOMyainq1JvksDOC
    oLJ0gepaaJF3OVlFacf3vzLmvSCVx8d+NXGdf946jeFvQd+gnte3v7YAps3LuVWF6L5V+/b+NDB/YVf7eq785prV38XT8y/jBcMtw
    TjSboi5Qixn8H+q8EzhBEza5MTb7I62ZfckXzW8rbxbcufLP+wyDcpNphuqLqTuc/I3al4mHlYcb/pWeZZhcRr7DAJya7kJoZTMAo
    FSVLl9gD7qPxJ9rvyp42cCiPpLJXqJzKX1Ot1Wf3+2KyamvcqXDHJLIx/wrkkPq+r3B/AEqSSqpGJNxGTOWY0mRmL1GIe0ldZayLl
    uEqlspYTq0wi1UpnSkkaou3SvdIj0uNSiZZ6qNJEcm/spRiJx9KxmbGFsbWxzbHtscdistgtvLnPvMPMmO1CEieRVu1RE3WLz2tLj
    H9BVGZ0PzePLWamn3pV/evi1EDSDcxDGGke08vgb4kbOQYL/THiR8fQ+SzDc3RTw16L9WfgB169jq5RUheoIoGSR0uzDPVq6UkQdq
    Ho3cNGpGsNKVLl2LKBD4dVncsXGVJNs77/x0Ro/OdrKscF7Rolp3CEJ1Sya8Oulb0Nj7CF0WNPfGO0acMDycLNfQlvdl9hVsik8Vu
    XMzcsMAUMzlBh7f0Dbn1pfaUrYH3r8ExhnZtX6tNKN5a7r3eT6oaOuq6GZ9AbiAs56/C16Frnta7b0VbnVtcu17Ouj1yfuVR9DSca
    iEfvMXiMfJAPcVq91qA1gqoOyeskCq+L+P12r0vv91c1ucJ+v9Lr0vkDniZXyB+Ie121/kC+eIfQhlxOL0Yo4nQYnU4HqqtDqNLlN
    rpcboTrXE7Gg+2orpZgEg65nHqdDKH6Bgdvx/YWxRHlcSVR2hvoZY3c6U6JA2qgGkJuMqca3J5IvIrW6Whd1YkqMlx1FLSyrb4hj+
    eA2t5ozeOK26jqzqyL0auKGXxsXexsRlx4UUNbQWvTH43HtLQMHCIObDJgq5g4fwtM3aPMOrpNUX8MY5+JHs5gj150YimtLQ7AKYY
    6kLTMXFda77C42sxR3EciFc1Bm1Zpbm+sGG0upUf/aR09zakvzxSqNZUzIkoClTESxT9jboKl9VmXnbt5RaosNLbMI5/H2DfPdSy1
    JNKhEPak4sormPlXJstCdE+7QMs+BGvuw/05vd6XL/4zp26kSLhW1cg7nVre6XJp1U0umd/v8Losfj9pckn9AZ3XZZ4eQD7eR3wur
    8vHOy1Y63K1lDxRl8OPdFoNxi6LTyaTShGxmGVaOSYRjVaNF8KZ/cauAA7wuogTOXCXAyPHWgdx3OiHRaB7rT+zji5AJ91t60q3Rn
    D0E29L9Oc9UYi2aqpiW9kbX0VQaOVBrw5nKOu38s03vrqVfxXTVaDHe1TMCjFDLdLy2nq0ztvnG/AO+L6Gdmh3eHf49qF9PjXrZX1
    RtkzpN0TtEj5fvCJnqAX0tGDQ0zdUvBHz/A68x5nls04Zgl5wfyZGr0Vf4GVGR5qnLzHkemsayTSGNMoXT4/ltMa0Nl/88xDQAP5t
    TmNJlwyyeP+H6caW1vpMGmLSUTEoSQa1u2Wwz2txgXw9UN2Ph+eN8/nPrV7d4S14+rpdsQkt3PRzB8ik62JNJBRSBmb2fv4Qu/LcE
    9fMhgWev4Z5MVjnJyH66QSs7mmwoWrkxs8LyRX8CsPDirf1b9uO2Y8533b9WS+XWqVuC7GqLHaLs4wvM5QZI3aFewBMqoVGpjFDq7
    3I4FIso9tqKbXElArTSP8Q3kl2SXbJdqoeUj9Nnla9zr0uf831Nn5brSasVCaRSxRwJiMWlUVtdsmX25Y7v8pdq9po2+h6SLvfut/
    1tuO0TDlPo6lFjLlWKtcrbZ6ru0VxABdKsCEHDyLSKTCYsce9aXDBtHqPnujB2FKt3E+NrqD9EoG+c6RUNXL+5oYa3FnU4DZjNx9y
    hY1heYgL2+xWO5Fo1foQ8MkRwiYZpCwSSOlUmhBWOwnE2KAwh5CdhSgWa4ZQupsp+VZwFOqnntU+mUTfyOWLZwSlvpFY9Y0qAJIvf
    pDTNaryxY8BcTSnbpRDblDdiM67Zz0XHDUQLRxEOl5KfN6ysI5HnF8q3upQjaGv5UmYseB2/OBDbxTuL9z3xjfwbtxwaNHM6+buur
    Kje/HS3dxCVeHqwi8KhVcL5/75KlbjKnz/9O8/Wnin8NTTGxICtv0BypRX0zu6MHjUv4HdH0CV+KtCeq59nf1hEyMLWAPT7JOck/y
    LnEv8Uj0cJSU8x0vY6viVjmsd1/rvCLzp+EngaFy2y/xL+7+sn9s+t3NxmSpPfrUPdIMfiwmJP6CGhNAIOj8AqlxcvsqA3xgI+DcH
    7gqQAIo6fY4B/0n/GT/D+7v8R/3MUTiIWaJOfyAcqnLk8R8ESwAhSbCyymDQE+8vfD6/XyKRyry+POYEuQpF+SiJvmvJM0Qwq4IhU
    Gmly6VKlaqLapmq8QexTbxHyjTTGyTxvnUUjv3iRbSYo174KKiVePPIaPOY+92/LtOooxomQ1VMRgN63SrqdJAcb1mF0W4K2cKRUI
    UxGsdldohi5so4LreG48ju+MLrLjncpSubCKhUpaoxJlM1Oq0GUwsuqQB6vSCaBNN/OtxgL6g7bjH5MKMbc7cDxAsu9ujUMVd749m
    TO9Z03IAnCo7yusLcwrSexru2zfza42RV4VbqYn/hbLcfuH7n4hZPobbH7GFCZBXZNfrd5G2rdz9ArcBUkAMVyIEXffsg8sM51WpP
    +amtHMfrU16/AIsz7GerIUHw76XSc+AcW70u3u+Xe11asOK/t9vPuV0eqT2CvITXylAfpt5zVPCD1vfIibzFxlux19pl3WFlrF7eg
    72eLs9mzw4P6zmEo8hKvjvko5udP3sm09/MA8BinSnd+DWPNp/3oM67UGBc+zNjri91jP7DqIrGNqDjVEHvjPbwwmWWtqbK0SbqH2
    mVi+9sudwShqPu1zav9ek//+gLU8mam2btxGspR/TF96SfUF+XSISh7fJ/lpMp1pW2b1nz1jdsH9o+LJc2WrG0woJCqA7NTCxMdCV
    Xg7ZP8Enq4/YlB8Ap3pPMJuUv4yOJ99HfUTHBrZevt22I3Ca/xbYHPWPKoleQ3GorR2WReLIRTfFOrFmH1mE54h18egBhuc0mlcsV
    NpvVbpcp4cxL0B9Z7EKgGHREZ9G7dN4IWF7EY16ldfEeO/C/JlrtqhHYchYp88Vbh6xKhTdfvF5YWS6Teu2lKyBZZXnEWF4eUSElD
    96SstJqMVqtFrlCLlNErDZI2yRSaaQ8CkRRi0qpYPmI3Ub/8oxVMjeKo+XR8gj9uzUq0ObKGq+HvjpRKmRSedJisaNWBX4RhKicNC
    MBFjUNab44vJ/XpXh6OiZXDvm2X3XBzYrZbZ2jduuo3TZqndGxrP1PontVcrGoJ61vXNeos1Ava2tnVYxuQo56WbLzCSjJXJQCoyp
    u30a7FYnOwMVx5j8zn2a28rJmGXUVmnEmNiihX6AfiHrl6pQ3gsHI94g+XKa/H63rp++M6Esj8NbgDzXOPigwGS3YUAZeO81JxbzB
    IO7TslrpJ+GUUdJYuLyskC3cGypMaK8TyPRJ8Rqs+FVDVaI1Tb7W4TZZK//x+wDfMJObHmKCIdX2zx9nVp3byV72zERJKETKXOHrR
    68mZMfGmbCXsULqM1k2jt5EOuZPcJbHiejB6WHvZkFSK/EVB1Gw+MGQ0ZcOUA/kWXWjJ1RhqbBGg7EQZ7QabZ7gqjC7LfwU90RwP5
    e37g/mw9n4n4PyRtvEgBC/0r00cG1gY3BTmSzEBrlgOFwRrqyD00CClZmCMWtfnEEcSKDZ69JM98dc2BV0u+C05lJPD/BO7LQ6XE6
    +EleGK1yVwZA2hEOVFqvREgpbrOFQKCLhjJJQUMKFQhILqqx0uZxErZFVwzk6j+uGBA5zeaIW5JLgBo91ppWAlIQFk0UitdB3e0Ta
    gswCnNCyZtZ8iHyA4qCc1Fp96kQcV8XXUKmKxTIx+iaN6vQzmREKGXTea8Si/75VVpKVV8VESa1/STwysYuRqGXoAY2qGvGVIf5P7
    70kCnD+Lq19LT2q1XLZtmBiTeG35ta66aPSSc0BUDuFHyyc0Uq2ucbFuz49c4XdfwUsudwdPVwwFfIrk+dVEOZJx7fH41DIbwh+rZ
    DGu3bWOPQ2LkSt9YLi35l3mVdQDWomUwWThOcbWS/fmBCa21N31d4v3V3LtFClvWha7f5GfJP06cpvNx+ofK3ymO/tymO1f6qU10o
    7pFMNUy1Tarsty2UPot21T+H9eL9MlZTigZZd7COVj9awqKWrZYm5t2WdZadpL36q6SV8okUhM3e1bBjHTJYRk95ExtFeXrU0nhqH
    E0kZKIdYRSRWEYpVlDcnn08eTjJscnyyM3lj8p7kY8nvJF9M/iz5++RIUtkHJ+txRplPtkx2jYwlsnGy6bLrZHfKHpM9LXtD9huZX
    ClzyPpkjFEvY6zqsCcGLZYvj4+bTBIPoUw8TqxCeSyltXqsC61rrY9Z91pfskqPWz+2ngOrYhU0fMpKQFaU2gpPRbwiXcFWtJe3aU
    OeEAl9hFBcnpZvlr8kZ72ACJLzYJfy+LDACy0DLURo6W0hLc+asIl+ESBEuiLpogM7Yqieryf1CU4IhFJrwZkm1ZzAdXG9HMvZxjf
    MBTGtuU286+yPdY70n+mP/SAD5usMnP2ow3H2ZEa8IYjFoZ4KJr0pGD1zkh8BxZbpXyfeIoxdrjfyP5LxzZrmZpA3vK6kjvaprC4r
    QZme0iVgQ5MzoOAZVguuqy+kDDeGNW6dG6m8cjf2B5qYejfinWo3VvghamDHuZH4QYF4EXjhEhCDNhM1Wn8M0deaobF72FBt6fUZl
    eQvbmdL98ilY2ui3kKvlsJlOkmJKpkgU56/o2tVHtdahEhr1O4MTxmXnrvuzatv223RKIxqu8OdWN3eNV+xaVyZz1aZ2PbQypmrn7
    /3K6vqy116q8kTi9R0TE9OvmVi/4ToQ4UHBR8fsk5tm/Ygbpw0q66+KuCgcj+zeJLtAA3nBh13nRB4WP2s+qD6gJnV6+tlyM27icV
    TKZdZn/C4fxgoKYs8/mQffkLigcQVB2SxW1UqmZJ+fijYLJt8YaMUmkIlewi+Bw/KJorpomsStrQWz8QkC+6LPU4v6qfVUjQ0bnyK
    YsGo0qS64kfjpC++J07iHtBeAk8rTPRRHlfzAt/FH+VZ3lbVsMV6QTDoEWUd8PpsKTdS8mxGzohXwLz4RjMTYzQ8NX04Iy52xB9VG
    4KhQIhI9OFIWXkZkWhAK4TLUFQNUUjnK8Nl2lgZXeLSvWB0yxY4KMX71H2GPn9fNBsfjkv6NJv1Gy2bA33l11febtlW+bD6IfPuiq
    fNz1ccqtAMaO/UEfoGIdMj+qigVIdsvrQ4Y6tXxDmLRzyx9oh+qsUM3ihXS4Wg7IJw0EMs+KyG0utnk1F86VDP/EIiq2woXDNp7cS
    hFXNWvLCibcU4uap6wtapq0PWUDxVaYl0z+Cmf/7mVUYfHL47H5jXsufmFx86dV2qFdtXm13O6Ojt9xo9jz4++FzYsK0kBUwGtJ8J
    eXGt0C3RTzNmjGuNK0zLrJuM0pDiGfIa+ZHu5+TnzDH1MdPfmX+qFZtNpdc685jlzFr/tcxm/y3M7ZqP1B+Y5FFZ0YxlcnmMioFXx
    sgynNeM8ERzHkf2OcIGKZfH7iGVUm4Wv/2B1TULNn/KvBIO98P76WKD6RXf+2pSFAtWXS2yx/1p/0L/KT/r95aXDiIJKh1DQC9it7
    6Ew9UpUWpUIE5HwYOz+RruLQmL+E2C+OIgczYWo8ICh03x8HpmtGTZTmL+R/2ihMDWd4WsFpuFSJx6jxvZjWY3duscbmwxQVSSiyg
    9nMboIvdjX+l9UGkX0wXUw/pJU2NfDphMTGa0KJ/fsah5cYN/en7T0dXzRp+79+efBEKmQMo3Dn96aM1lbZebd2/Zs+Wlj7Dpwyce
    /6pHn+zZHQBWTECImcCthh0aExYIcSwxeIJEK0FSj4SXstEYwrhcx6tVKj1Sa2K8VhX0SH/ox0GPBPasw+NIO5i9oG4T4ZtNuFJzS
    wWQgI5RxOnLMG3cEz8eZ+LgYWIrZVu1zZGyusv9AmD/jvL4b4+D2/FrhMrHmB5VHdVi7a+ParDm12q1vlw19gqOYiFenkh5VUdVBN
    Smqlo1oNqh2qOSIBWv6hWTR1WnVVKVzRuvjpOq+I99h/BSLIEjZKx/Buxl2MSdJ5v5k/0n+0G9i6k/8WdjZ34Aq0ddWGB1WnRhO0d
    hf4/Ado/RlziwsUsvc0ox3eLih0h0S9WDO9FC4MxSm6wtS429YBaVb73oTlDfwmJKmvBxo3fe6G/StcY77sBv7bv+2qnjU+MlrIq3
    uMrINqZj9NqvWMGJDGJH9XRy5+KO+I7hBQ2VE+p8cqdOa1Joq2v3Xit+mROFKMCtQUrkRL8TzO4BnSWt1YEj6QR3Xs87JZagR09Vq
    F8d9OhoImANepyHxQ/9JfQGNVWX2ivBEgFhlVOi1ynklLFOKC1ZVYEpV6lKN+hRq0WA5sUvE5pqxQ8VvIHSBzYGi4iFeGV1KmvB2y
    0YWXgLsVwvuLvcxOPude9xZ91s3J12b4fEsPuEW+KaMQyHRFiGs5mM+ElOjB4UwayO8T09Iu4gyt9/e+EIBsxC79ZK16tltTjcOv8
    KQZg//82qtoK0xW2smsCtEQsE4YrCuFHHkno2GCR+yxLih2QIZDwGfAuCHeIRTFZPudarx1k91nJIgngPx4NHJlGCSIu8A9nmRN6B
    qPOQEMwBeFLCKdB5IVVSzihLnKFoqDKVUo5xiGIhACzKKvF2JS6d1q736Pfos3omrk/rt+uH9Sf0nJ7S16RSFO+vrErpRAaBL9z/J
    Q6JzDnPGCjH/8GOoS/YMP3zjRcmz7yxmE5+7HuuA6B/1ciH5wjW1+24TIX1l8s0YTVGUktYKpcpXQJ73o6yQhhcNRaz9kDJjopoUg
    mlRTTUOD5FsRCMxFLDgaMBggJCoDdAk+BvPRYggdIVn3BUiZVjelTE0DTF+0F9Km30zcHAvrLahn763pU/A9PMlCwu3a3U6PbT77z
    o4XKEgqg72zG4GiTkcXvdRGI0mAxEIgk7nHanzcnQm8AymKXLjc1yvRtZpa4yehNYht2Mxo0NCosbOTlL2UVfaMWi9LUcWN+aCG7E
    U/AUfpOK65NsVm3m+2wDku2q7fyA7Q3ymkexWQr2WbvZul06oB7QbrfK6BVQfw+99Bu79An46as7i188To59ylVHFymMC9f94qpl1
    7391skPjySnWDTKyVWV7jK1MRyyM6/c9MG2129/Akde+RGOTep8/8erM5Om2vzjF2Lfc5tdJrqCZYWpLBAiP4rjDYJNH5dRBY10VE
    XzOokhDoqc6mUqrMox3TymAQRHoPJWi1Snh90uCYU9SolUw5fjcsFh19eU1rdmzE+qETU0WN2umqM1pLpGqOmq6atha/RjYq/WCyp
    crRJUXaphULacylY9o1+8oSt9PqEqOSGqMSdENeaEUB+kufQGjq6qSFpTIq0ZI625iPRsZ+n0N1LSClD0Ze/KG66wum2hWNgVLgtV
    WMvLcNgNUdReWYYjztAFr0r0mWFdxwWF9KRUgEabrZvdm8ObK9gNxs22PtcNgb6yzbHbjHcHdhofsu5y7/LvDj5t/Jb/ueB+4/eC+
    nYTFj0setsXOn/Td2Hb+UyQLH2AVbLJZeJ6l9S+FO+1VE8c/Yu4K/EdNckp8678VvcV31nV2Zaon7e4LpBqDAvLWhcWnpycsoZCxG
    fpZX5HddX1k73xm/94671/ud5vf/K6xjkf/61n3H30rmAaWOmrQQLKcZmgUIaVjUqjii9tKX+Qbqk/Dzk8qdiYTgE8kPPUilmXu1S
    s5UUslBnNKT6Gdyp3xIjSptaltC5wqss9Lt7Nl0uwyWyxID945KIqtLzmcYmqMBD0lFNpcgUUCa3gbk5rBWd9Wnslx7BSVC5xuxTa
    DFIcwgsRixce2CE9Kj1BP5/FhwQlKtdaPGAdogF/Sd4oGqpOifeUQw5v6b7SqDenhv247/wnQr+NzpgrylZJF4IAnTmTGRnhT5asB
    WiDWIwKh1QUDtEsx/CY3hRf0mBT3RcWueQnUU/JUnKFS+9qUqWXNT/K3N3a0NZaVTtDqlC77OUmL5aq4g0F6fiYTBGuZp755dcWdq
    TbprazErM/veiatxsaeYcNDDbXeB3husxOOxcSv3s4SX4Ja5QgzwkLlNUmPs3y6nIj7ypnJUaz8bXQa+Hf8B/x/+Kl5Xwo2sDXRbc
    qHww8GPyW8puBvHJfQMmpOLWs3KSapJymkghKQUX0CQ/aTTwY03fuWFDq04+J97MdggHt1sehIBX/e8zqse12eOx2qliBZIcd2/N4
    teC27Tb/Xa/nwjGp3h3WK8f2saA3pfAV9I3hiX1yo2QuTQgKuZHMLb0UFN1mpTZVyvk1NN8E+tsDTpldm8Lx1MzUwtTa1ObU3pQkp
    Zd5aSM0JnO1Mg+czAR4uJTy28sj573uCI6I73dB80dsSaryqcYHP/kkWP5+US+8IPM6+DT9eFCwwCMywehLy5pNAYjMIcjC3MZeuV
    ATcXYdPZCdf9TnBQ6JU5FDG76vwPN0JvROTcTQioihIYpzF9qK9ZyMiV9y2bAQsQKTnTqIeAdE9J2foDaPffAFvjztyO12a9PufPE
    PQypjCQMFxfQVoUgo0h1EXPEFQQ+0nBsIOTdQccbzJPzH1PEZ+5zkY/HTUW1cUOjScUGuhaj0lRn93ChWoqI9hyphaLDVjw6VMEzV
    pk2HKsE/htxbghwSoUqzOh3KF/86BOoU8MkDVBM7QddeeF8FM+kvfX6WAd2GDaWPUKjFYi8oM9gtASZ5/tvI0hfLdec/SSEPaP3jb
    2ktbzJ6cTgz4955bX1upc/s4/2VX59YPb55xa7KCQ/eM32SQ6c3W5kfFH5w74r6oMNW/vpd82bs7IoqE7jr1lvHRasnTlrVMHvJmr
    0hrTZAdVy4+Heykx1FNvSwoNmu3K4iYqRUIVse74f1YY1GxnQLwRKvkv79aUa5Tr5Mo6SfDmoEF6fcr7I7MMsiLefhCBc1mE2bjEa
    DANw3UJHiXf5U3DBsOGpgDDY71S6lY1tzJ/2cHwwU+Pr0q68RyKL06MkMfX8hntyasfj9bb/4vYcpcOFGRVQs1P2vq6vH+Xff1Yb5
    1ib3rP091+sU1900OIEdLTy3ZPSlWXHXEvPwkvH+nfhfgZ5XN9G5posn2RrmGeTH99G732Hh6Wm1XcGjQSJXOVRR1RQV26h6xPktZ
    97JnpJ+IiN+QalO+WgEPqsBPFYDe1yKi1JMndVAQBv0GAIBd9DjDwQ48FRty+RKhRL5/cAACZJExyy4WyJ0TEpJhPG1EqENoLEJMt
    U1EJVFIAJLIhFilRC5PRDxutQRCdZKsFdyREKQhJcQCb12UwQFX2s6KLTUBkVfsCklYmhHxBVVIs5FS9XQsoihSYoFGzgYw0HsCWa
    DJB7sC5Kg0WPCpqiWKpohaFjE9U0pEcdrRAyNiXrI4AqmTmtwXDOsOaphNLbAjAtXNaKVoB98XPAe6e9M5uIcNSMj598fil6leL+W
    6S8dO8TDNjgp531s8cosPGbvx1a9rl7MMm9Gxhduabv9spnXR8ta8I2GckfQFWkoa2GeGQ2urpUGb+yasujmJ/D6VSlZaHTL0ia3w
    T4Tn6E58d+9qfuv4Vb01lj4BJuxmWCyitEw+1kPWzwfuPSXg6ROUpQUpae+HGQfyo8pPqBB+bHyY9U1NKh/rP6x5qUvB34cDboWvV
    r/Pg2GzWIo0GA8bjphOmHOWWdb37C9filcCpfCpXApXAqXwqVwKVwKl8KlcClcCpfCpXApXAqXwqVwKVwKl8KlcCn8vxPovyA39j8
    3GBFDEbYDSOj/DxhiaidfNnvu5VOaps/URRLN9crqGpfJbLGq5nVP4tsNRvT/9I9FS8WYpfw57S8WIcY0pv8SKsRhFAKO1aLJ6DI0
    G81Fl6MpqAlNRzORDkVQAjWjeqRE1agGuZAJmZEFWZEKzUPdaBLiUTsyoBID6d8WIuK/pyqhJXNWXrVsvXfGsmu9s9detejqiglr1
    ywVqRDegTgk+78c/b/RnUani18qGPvfOiSN2Hke6BD+JzyHZgPY/g0SUDefAjBlKsBWlv5D+Qj5AJIAHf8O8Mze/wXcPBTjXkezRJ
    iHyv8XSO8B/DpySRpR13mAfFiEeWjqeQB26ClA+f8EGN+CC7AezWTuQTNhTBMuQCOKXgSx8yDOfT0qowDPTGNcaBbQhyGfLu2r//G
    ja8HpPh7M7j20UNv8qcxWWrwn3q+dSPEbLydnfn7n6N08ktUCrfz82v0fCjDTEwplbmRzdHJlYW0KZW5kb2JqCjEwIDAgb2JqCjw8
    L1R5cGUvRm9udERlc2NyaXB0b3IvRm9udE5hbWUvUkFCWUtZK0NvdXJpZXJOZXcvRm9udEJCb3hbMCAtMTg4IDU5MyA2NzhdL0ZsY
    WdzIDQKL0FzY2VudCA2NzgKL0NhcEhlaWdodCA1ODQKL0Rlc2NlbnQgLTE4OAovSXRhbGljQW5nbGUgMAovU3RlbVYgODgKL01pc3
    NpbmdXaWR0aCA2MDAKL1hIZWlnaHQgNDM3Ci9Gb250RmlsZTIgMTUgMCBSPj4KZW5kb2JqCjE1IDAgb2JqCjw8L0ZpbHRlci9GbGF
    0ZURlY29kZQovTGVuZ3RoMSAzNTA1Mi9MZW5ndGggMTk0Mjk+PnN0cmVhbQp4nJx8CYAUxfV3VXXPTM/dM9Nz9Nw99+zM7uw1uwt7
    NSyHgggICAusLCAqCFlWQEWNQIyiIILijUYSbxFdFtAFVIjxjAck4hFjAvpHNOoqyR+NiezM96pn9oDEfPm+6a27+qr33u+9V1W9C
    COEjGg1YtCkiVMylUj5rV0N0fnzl8xdWihffwAhvHX+5cuDT5gWCFDxEUKamy9aevGSHdYaOIe7BCHVBxcvXnlRob9Yh9CU0CUL5l
    74znH1IoRu3AWVNZdAhe4p0oCQSYZy5JIly68s3u8DiJ5b3DF/bqG8eDZcY96SuVcutZytyUD/C6Ey+JO5SxYU+7dD5FvasWx5oXz
    j7bR96WULlj63dWMA+v8cId0O9jOE2NuQB1I/Mw/5EcofKYZPctdCG7Tn+vJ58j6cPbUYCr+pcNyhxFPxhEKKLkSH0RJ0K7oL6qrw
    2+hxJCMz1B9GDEZ4BmpAm9EV6F00Lf9XqJXQg+gblEbD0CX5HLKgVSiHf4oexAQROKsOvYMWoE2kgUmxXyKMSnA5sw3/DJXCVaaiO
    5ETHYQrluR1UN5JfDBmBOrfYOZw6Xx5/m/4APt6fh76FW4g77FPoTdRLw6xKHddfn1+S/4+ZEInGV/fb/IV+SVw1jTUjlaga+AJVq
    NfoLdwK2kk+/M3wTPNgGdYhZ5Fb+AUi9h2ZEXnQe+fo7vRHvQCOog+QJ9ijM04gVfjd/BhFep7KfdS/uz8vHwHGo3ORZPQamj14Sg
    eQWYyM5ntzPt9/5M7mvfDtaeiy9GV6Gq0EW1C29D76A/oj5ghOjKVTGO2Iw9qRDPRPBjNzfBMj6PX0RHM4Wo8HMv4BvwkuZxl+l4C
    nmSRHUbwLGX0b0VbYEwfRk+jl9Ah9Du45l9hTBks4hSehmfjn+Lr8S34dvwwfhI/hb8kKvIBwzBr2FfYL3Pv5XX5e/OPw309yIuCK
    AmUqUPnAD3fQl/A+5XgNG7GvycpkmYwa+jL5aryY/Or8i/n30dhFIe+jWgUvPMENB2eeiW6Du1Dr8C5b6G30XH0dxglBuuwFcYiiM
    P4PDwFr4Cn2I6/wX3EAfSrI4tJNznMpJi32OnsU327cvZcd+6bXD6/Ld+V/03+TYW+NXCfFqBAG1qKlikU2w33eRkdQ39B38I91Dg
    Az3oWHg/vezdc/wg+BezEkWvJkyTPNDKbmNdZkb07d25uSe7u3M58dX4C8BaDVEhE1XAMB26ahlrh2j+D0XwQPQGU2Qnc8x76Gruw
    H5fjs/H5eAZux5fgDrwUd+Kr8TUwqo/jXXgffg//EX9NWKImdhinFJlPfkY2k13kJfIeOcYgZgozg+lkrmY2M7uYQ8znLM+m2XJ2A
    tvOrmSvUiEVo3Zwb55ynlrSN6/v3r7f5Mpyo3KX5tbnfp17L/dJXp/fn/8UqVE5PGMruhie8afw/jegW9ADwB9PwDN+jD5DXwLN/w
    ZjwWAtdsMTBxS6tcBzT4Ann45b8UVwXIIXwfivxttwN34OH8C/xq/jN/Dv8Uf4G4Lh6cvgqAcpmEYugne4l2wjXeQPcHxL/sHEmDR
    TyVQxTUw7vM1a5kZ4n7uYj5hPWcLa2Qp2CruKfVXFqC5U3anaonpJ9ZrqCzWvnlXEiEEEgR/zJvk128QsRlvRJMIwX5Dfkwb8U/ID
    fpT48K/hbj5mEjOJtJB6RPA+4PIlSNBsUUtqiQiI11CMQ+QeUspMZ2OMAS0HeUNkJrmBtKNH8HPoB3IWcNrlzFtkK5nDbGFvY5vw+
    2gV3BMRI/4OjUAjcBPQ7h3UCRQqZZ5m36ZXVHHMKdUSYsyvZT9TEeb3gIONmDC/xTNxL55EHDBa9eQWFIYyj3shPRsk8A/A+XvwdF
    THHmVuJuPIH6FuMdqMfw3vuA8tJvvwr4AudSCPl+FJ+D6mAl2LO2E0hqFF5HYUIktJCPh5Gvpf/DNsB8n9AWgTIRchljGS+egwaQW
    qH8JWUoavBT5dgtbjdSiN+/AB9Ca5FdXgBcwLp8S+BMGnevEO5iy0A//Avs6+Tli40q9hNMsBPWTgkAcBI6aBZEpMDLimDqlIGvi/
    DRDwHGQh3+JryGK0EN/N/AU/TEagiWgBs4yMwXfmvmVHMFUwYnsBTVrUwzikalD52Gqg+GeoCbjxYoTUl7BHVD+jeeYd5mS+NS/l5
    qhMuY/QVTA6ZwG6rQdZOgt9iB34AjyZzZPxbD5/PtpGnmY/yjuxAUvod3mQsNxu3IAj+SDuzOvxZODwC9SP993DrmevZ1ew14Bu+g
    FQ8wZ0G7oXvQja5CHQW3EYx3NgNGcD9iwEHVGOKlEW3q4JjQRUOhvaJqHzAU/bASUvQj9BnYC896Mn0Q7QUONhPC6A8y5Ci6B+GWi
    oq9G1IP9r0c2AAXeiR9DvyBPkAUYiN5KXyeVkIfoQfci8ysj4fHSYvYldhaagCJqMbXDnWqBSAM67Of8O3C2JPID+1SClwPf5L/Pv
    5R/rOwjXewSe/Tb1SPSlugUl0ET8HevGKnnEVLm5qbGhfviwutpsdVVlRXmmrDSdKkkm4rFoJBySggG/z+txiy6nwy7YrBbebDIa9
    Dotp1GrWIZglB4dHtMe7Iq1d7Gx8FlnldJyeC5UzB1S0d4VhKoxp/fpCrYr3YKn95Sh50Vn9JQLPeWBnpgPNqCG0nRwdDjY9daocL
    AHz5w8A/IbRoVbg129Sn6Ckt+k5I2QlyQ4ITjadcmoYBduD47uGnP5JetGt4+Cy+3Q61rCLQt0pWm0Q6eHrB5yXc7w0h3Y2YSVDHG
    OHr6DIM4ID9XlDo8a3SWGR9En6GKio+de2DVp8ozRozyS1Fqa7sIt88PzulB4ZJc5pXRBLcptutQtXRrlNsGF9G3Q+uCO9IF1N/fw
    aF57ynBh+MK5s2d0MXNb6T0sKbjvqC7nVcdcg0W4uLVlxtqhrR5m3WjXwiAtrlu3Nti1dfKMoa0SjVtb4RpwLomOaV83Bm59Mwzi+
    ClBuBu5vnVGF74ebhmkb0LfqvB+C8KjaU37omCXNjwyfMm6Re1AGve6LnTeSqnb7Zb35I8i9+jguqkzwlJXsyfcOneUd4eA1p23cq
    coB8XTW0rTO3hLYWB3mMzFjME4NLNgoE3JKd1pbvx5AyOL6ROFzwaG6ArOD8KTzAjDO9XRaEEdWje/DrrBrxXDWV0XAkUWdmlb2tf
    xw2k9Pb9LFeXDwXXfIuCAcO9Xp9fMLdaoo/y3iGYpnwywGrT357tSqa6SEsoimhagKTxjk1LOlqYv7yELw0v5ICQwfGgSjO3c1uEZ
    GH5JogRe3yOjeVDoWj15RqEcRPM83UjOpFq7SDttOdDfYp9GW1b3twyc3h4GTt6FqJNg7+JiA39m3mEbfcnwLuz4D80LCu3jp4THT
    545Izh6XXtxbMdPPa1UaK8baCvmumwtMxgPKeaIh1FagSlnD3SmhRmGLjYKf2qFqS/s0XDAlUoNDo7p4tvPKsStOkn6L0/qyZ+gZy
    nJ4GnFx+wanjq9XH9a+bTHM6xj4IHZGBk/dea6dbrT2sYAAq1bNyYcHLOufd3cnvzqeeEgH163BwyQ2Lqlo9v7KdqT37ve0zXm5lZ
    4iUvwcOBWgkbuCOMbJ++Q8Y1TZs7Yw4Prc+PUGd1g2rS0j2zdEYG2GXuCCMlKLRmopaUgLaHxGDi9GyxH2uTZA97YaqWVVSqU8vwe
    jJQ6rr8Oo/k9pFDHK3XwK6W0p/oLrIi38pr879kfFG4Y+sO0xtCFQ6CprgNblCAeZUArIebjfB4sfLIX1McB5kD3tCq5B5LhSrLTF
    KlcTVO9UUm7tVXNIzLMAbQUwtMQDkJg0RyIVxVrGBSAuBkCrd2otG9l9qEuCAcgHIJAa/ZCzV6o2Qs1e6GmmelBmHmWeaY7EoBb79
    opRiq/GeFmdqI8BMLcyqwHdy7AXFBM5xTTjZCWQLqpmG5g1nfXB8wjtFDG6BuI8xAIvNt93WMnVu5RMrUNSmZLf82WnVATGCEy98F
    T3QdPdR881X3wVN9AjOGqW6B+C9RvgfotSv0WhJVLScnipYqZ+7rNjmINZEbomFbmfLAUAmCXF9LpzPndlYH9I9qZaXDpp5V4KzMV
    4o1KPEeJJyrxKqV1lZLvUPIdSr5ZyTcX8zTODIkDSmymMXMeMwVshAAzmRmnpJOY0SgK6UQo0/Rc5mwlncCMVdJzoN4F6XjoZ4V0H
    DNGKZ8N5VGQngVlmo5lxnSPCpSPWArlOdAG/jRD60fBM4yCZxoFg0RrNkLYCuGIUjMH4lUQDkJglJ6YGQVHCxwjmBFwhgzXkKFFRg
    wjw9EMRxPTBC2N0LcRYplpUN6xAXo1wJ0aYKwa4MoNQB6wXyFomAaIg0wWlUOQIUyC0A5BBddJw3lpeC6wScHLKAW7KgB2181IgDR
    YTANkPVh8AcZP1nf7A/IILdkF3sMu1A5hKYTVZFe3ymoeIUA/2jcDYSKEORBWQXgAwtMQONRcaJH1pJk0MxPJRIYF7k7ubGioVNKq
    mkLq9RVSg7vSPOIyJgnDlEQPQGDgkZPwyEl41f5SAAIB1omj/RAOQjgCgQ54HAYjDoMRhxeMw/lxpZda6fcNhDwEBpgoDtc/vY9KO
    TsAITPkKrQ2ATUJKCXgnAT0TUDtEYixcgZtnwRhI4T9xbaQwswhhTlDcK0QPG0G4mYlZ4Y4wIS6idbcA+OLh5tH1MK4T4QAjWQDjO
    YGGLcNlEMIFeIMtDQXe2yE8DQEFbMHjiQccTgScITgkOAIwgEUZPxAvU1wbITjFjg2wHEzHOuBGsLTqf0pMifbkV2V3Zh9IPt0dn9
    Ws4/MhaOdtMs65HAAZlotnHsED+7NbGTE/1Ti7Up8mRLLSuyU3bONx2YbX5ttvGe28Y7ZxhmzjefONo6ZbczMNvbgebIzZfxjyrgp
    ZTw/ZaxJGbMpY1XKmEwZR1jAUZ6OjOgFJR6pxJVKHFJiH57ebUTa5/AsJHHA8Ti+S1oT+FTqYXF34Dqph4PkZ4XSrEJSTyufCZRLF
    wfShZpYIYlIz7NwBTQNP4k0OCWnNa9r5mhkzTBNmaZUk9DENWFNQCNwVo7nTJyB03Ecp+ZYjnCIE3ryR+UU1SCCmqeJmqUxq+R5Qm
    OiKBjwnzmCxqEuGzOejJ8yEo/vOjAfjZ8X7PpuSrgH60Avq8IjcZd1PBo/daSrqzY1vkeTP6+rLjW+Sztp1owdGN/SCqUuciOovak
    zenCeVl3voSbwHoRx+voNnmLa2krPmbGDxRs2tCLH5c2uZmuTZdiYUf8mai/GqcGfKzW0AE/i67pz/JQZXU/4WrsqaSbvax0PI0ct
    5j2kjtSMHrWH1NKkdcYe3WpSN/o8Wq9bPap1sB8KQv2oPUiiidIPBWk/FDyjn5/U0n5RmhT6+ZV+/tP67WiURo/aIUn9fRqVPo2n9
    7n49D4XK30uLvZhCn2kIX00R5Gk9JE0R/+lj/+/6BP9t32GjOaCkan/8MN70Dj83o6Wq6i70R4evQBCe9f6yy9xda2eFwzuQS34va
    InEmufN/8Sms5d0IPfCy8Y1dUSHhXcMe6qf23vuoo2jwuP2oGuGj11xo6r5AWjusfJ40aH545q3Tl2bsn20253U//tdpTM/TcXm0s
    vVkLvNXb7v2neTpvH0nttp/faTu81Vh6r3EvhemBLDo1sBftWSXcSvQ4YuN0jtY508EubFG6ul1zXevayCD+G9GDuG8B1NEKgTaUj
    SkfQJpAy2mSiXmWxyXVtveTZix8rNvFQbQmPRK7RC0fB37Jlxcx/+bds2bLlFyy7YBlNlb9ly1dAoGRCy9Cy5QjeYIRB0W8BQGOKz
    esh3KxgNLNsWetypNB02QpEr7acRoMXH8itgCvjZUOZAC0780c5I4UKAS63bAWGXrTjiiLbLMPQCJdB9CGLV6ETc3ROiL1YBWYs0q
    AxO9SaHmzYRTBSsTTDIJ1aBZlnGIa4tRpa9wxGIjfxalfqXP5kw4S+hnP57xom8H1gSDT0NdBQUV5lkSxRySJdzKJTQebAKVmFfkB
    B9gCotn35z1kBrGs9cqIUqgVuHSmPf03E6hC+lCtMnKRKktpAUAqFI9FYXJvwuyYEwkfCJBzOMqEJvHhIJKLI1Ndm8yNqM/ZaJm+u
    1RpqzQCfeWutugd/JvOj/E3qRFNdrTmN0/mm2soe8r/PjtKijH7+NlcKNTdj/rvevrbeY/yxQgbxvX29NFiHZdp6LUqMLVbnMOewi
    vKWlfLU0hbsbKhuSqDhNXUJLJdDbmQZ5HjOmkAmnSGBBRZyDgK5xqr6BB5WC1FzxYgEaimFyKIxJ7BRD5FNZU8gJ4YIDUh0f2bNGg
    B8x5TxXVFwyGTtSO9wr8Nr8jaM0OaPoeb8V0iGlIcg5I/V9f9aUWcbFtThUCxbXVNV6dBUx8IhtV1wVFXWqFSF+tqa2ihtswsaNfM
    jfcnxuxYuuvPORYvubFg2efIyGvA5p74zafQWjcrK6EycDjKBuxYtvAs63dXY34n5fvHddy9efNddi6csXz4FwqE+1mrQ6dTqYprj
    F99196W009Rly6ect2I5UOoTomH+h/0MleJq+TrBy4dl77fu7yOqFnGtbbXABDyByDkRpiTSbrzQtiTypvN/rSc9JyJcuiTEoIROM
    HGCZE2XxM06FRtFpaWRaESIRiMR4JhwxOsRvF6Px+3xuiM2q2CzWbUcF7FaBKvVUhqNhL0qlHDbrBatysRFkFVbyqJoD5jKVovGOo
    vjkCYywRO0Po9M2NSD75XNnOyZYA1qoC/7jwRGPbhR1k9MdCRIQix79TlXD45cT0WhbcLJBr4X5MAt8r1uF9/b1ktzLhALmjQfax4
    2DDhLYSsa2LVlKdNP+ZfWmspcKe5fMixkkNK3qgrOGaacU1GO29oovS0K+eyWIlXVGhWdbQTCxuOaIslro7EClZ2kzmWzurDFpuNd
    Fnfum8d50eKwP/643W4VLY/nvhYtLrPexmzEgYDbHch93KoWLWYH1/q502gVfX/5i0+0Gp2fz+TsZouopmbKJtTCNrITwBqaJVeIs
    wIBBDbOo/ws9lHOPEur5bwfoVmcc5bF4prF8xyepdFwH5UbsEEMcpPWgABm8OB4QVCGDRibpsf6jkEKOXhVS4FTLVKBXaX+l5aUVw
    6TW+lr5W72u91+vFx5xeU0TwK52UrdQ06bzYl/RfO5C2iePvteomFtZBWgnVs2oAMEuVVEZCkunAtocBxlJtBb26Usazv1KFl15ZV
    gLb2V/4TB6K9gUHplHe7m9OwHetG0ZA/2IwUFJ/SiZjgrWqBFuCBeZFqkbtLkWhr9dWLd8HNpgPsfz09nvlAtQTxaIg/Xah1Y1DJ1
    aJh2DD5bO0t7qfZyfKX2Ju4m7Z34Hu3D+HHtM+gZ/Cp+XfsePo7/ov0Of6916rVY34Nf283om9AsbQ/uhoeaxT2fYTDzvqUH79vxn
    CsF49vXe7L3GMrQ1+lsa8O4yBe4psAzzNG+2RaPRdSRB/WCySKqIv+cERXNBrvqMadJNOtBM3wK7/25iq66ZfD2nVaiC+/N/w0x+Z
    PdpVwSQOlvKJE/ieL5vyMHBHv+7894TVoTZyJ7898DTv2t22cqpWeU5P8mh5MqrylgClmXcH6vFZXhuMoYCpukRmu6UWVVqYzuRtR
    D3nymItJoEst/uRerkQvM1MLwAkoDagN79CqCMMxCowI0zyRlfMwlOkWHaBcFUaX2enwevyfgYdXxWCKWjJXEWLXeoDNoDZxBY1Cp
    mVjIEpFR0OaWcUodlVEpm5Fx2CzJ2CNCFDOkZVRGIBrE5hL4pdagfsjFdUN/oONlu8VvE5sFv8XZbKGRw++3Nod68j/IMmTigtcCk
    YeHSDRD5DQ1h2kUFxxGyEHECNCP8Vv1zaU6iBw05xNEiV7kK9kJGbPgDNCzAs1Ex1uanDQa0BxDTQMIrdjOKzgQj8FfNsvXUpo7Hf
    AHkB+HIxwidsB9JxxVldYs8/maBfeOu67MN9rshNz4n5X5R/GOqS0lYmLY2A1bW1KuxLCzbt5K/ngo99dfXFOflW5rPH/ZIczTfOi
    2hvNXXfFWY1gM544e2HPF240hMYIlutUCHQOz4nP2e+RBO7qtnKcn/71stqgRp/XInknWSR5Wa95LHkcGvEXW8gaDmX9ByxFao4Ia
    K1apCH6BKy6laKweYS95H1nIxc8ilZYziETYR9YgC3KSt8HhvNhiwRcjHvPPk6XIi36J3y5wEP9dG0AM6PeTwEQNzb0FzY74vkbQ8
    y7Mf3vypdMKFeWoTaFyP9AM4M+gNiWbcJDiSt9iBWmCua8FrVnUcSL7/Q+znQBFLqvNyZafT5HUyGlhJLbBSLwPspTCwR1q0jJ1xr
    MefUrFCggUyqzdOoPQGFIBijT3FXAevDRH/s9y2hOpPst8lemG+A2JG5KPJB5J7jPsKtEarTpH1lBXwibDJf6UEPcnwgZBTznF+IW
    11/FPa5+DTXD9I/nRs8WBVD2PjyEt0mMjgNqsXVqtzuDuwf/Ypdx7HzjJIPRQz31saYyOMJIOVAqWyizkh/56sgSl8a39Usl/d5IK
    JUQU+nqbYXyP8b24OIyoMIwgnd5AxOpyRIMxu+SSkS1skbEzIMjYGoGoKF1r1hTGG36oE3emWmulgnViBxSO1DaRrGKlaNRFzVbEL
    7VagzR95HoK/KcOY/S3zqmBp67+yROiWmvgLc6Fe+be/0ls1uW5D/ZOlSiRVlxz/OuOSyYmFj9ybZtLo3Py5Q9d8OG64XOXLc999E
    vKq7/Jf8LCQCEg/M7FdaDoAbWqKiuzluGRsyPjoi11lyH1KumGujvYzdk76x7OPlK3x7bX+YbtDeEt5x9tf3J+ZfunM5+x0PN2CyE
    gnKUHKOiFTJIz61MJC5OBB3EhVdiLRH8wEUuLQPqdwaA13YM37Iw1VoG9sWG3tVEdbqzpwUZZZ29kvN5hjHt4Zi+QwEvWPKsXh1Wp
    1Mav9uLVBUJQY5ZC5LFj5/LHYewn8EAURKnRdwyK1JalcKmwPDUmCqDprc5GojaBVUWrwzI1SWUcycZkasTK1C7FlCpgjaZSdW2dd
    aiuEzsK5gVFE8WmoBYj0CVWNCWdSkmhUr+MFIjE2JZf9W3P4s/LzE6eF7Zsv+3luc+0+d2ieFbn5nuvmX5bmrfoLa7pK+994M15ZF
    v17nl3fTa7nLfyLvOyZ5eO3zSFyhJeN+uCTQ3VgtbJJxqn7f/51DtBN71H5QksSB+S0O9kI+jzIPFLKl/A64BhPf6Mz/eCw2y39uB
    22WoyvWAPStLFhBEIYYgUCMLAP8swrEryG/2Q70YmUD6gr3xeKgYOZIY6h53pIdfJZqwyXezzBZDZj0EU/HvJT5CEZ8l6kCEshljW
    bgBt9XsgR2SAHJ0T+r5r62xoALFo4KllQ+1C/mvF1mmg5k1fg2WYCgxAMPJAWkBwvj3c0J+aK8o7sZTFVZZ+e6I/UwSiKosljBmm7
    x38ztNjqMk2Rolzr9H4/nRuOp4zl4mfepOOXe7bfjTCc8iRPgn4/CXK5zByafRnOaT3aL0hbVIc7lKVJs9Jzkn+JHl38nXxj64vXZ
    xImdhBmdgGGU8wzAl8MOIIuHHAJ6HnYaCiFEdgNI7JWl8jy+pQLGrrwf8ja52NOncjr8GaveR6lCSLd0PPi6ORHvynZ3mxNMrq+ll
    4cMzAHIQxKnhj1AikXpjilRWM5mEKHyvc63J5VVqvCvS3SwuRR+2Tscg5BzkXRDiVauvEln6oALv4TM4NhzRF67LQA68ad2PjL949
    seuKn5wrx1y8xXZX9+YDj6y+7rqg0eog4yiEsLflFgQCf9792vfZaK3ksIrWDa8/esv20bzLQUopDgF8WmF03YAiYVSOn5ANZSEhU
    h3yp/ySP7Y3/x3dsiebsmw918KO56axMzl1FAZ4J4xvsJiGlDRcHenJH5Z1FD3g7Ahn7IEzV7EsywmswMXYGFdiG24bb5tlW2Rbab
    vRdn1kn2135EP9h9YvjTY9VnGaoDommiPBqLQgOF9aKa1MLMssLd8Z2lfynuET3XGDdSYHRg9vsQZtQsDud/icIu8yhlDEaIjqYzp
    cniFladAiSU2qROVUm4yRCpCRh3eXNjKM1tOD/yw7Ao2CKt6oNbo+VjeiEr4kWFJewpY8T95ClSiCI8hAHnk21FgOjpRYsQ/X4TUD
    Jl3bBKo7+trA7Aed10v97t5jlMr93lEBpqLpoMTaeLPFbDUzaoNRbyTqNFsi46At1IOflO0opgNbLhpJcFCZUpXKWDIHaIseR41xG
    SU1cRkVDTm+QbHkKK51KgpHsZYKqieFB1lF4RRQO5RXirwTDiG7AObTIOvgxec+vOCGQy88uuT5mpbm8q3vXjO1zuWwGK3Jxt/k9o
    uxBzuWPrB1wdyZDcS27CdHHrrzHzes3/77X9y48IEFIbNodeqE3I7PpN89c9/TN1/35JRakMp38jnmPZBKO1q9Q8tQxa0G6CohajV
    DXtAajMaL7Uiw25EdjAmDU283IIbH5GK9zmLmdSxv0O8FScTksV1Orej4aoj5fGyCYvg0K8ADuONUpIkKE/iZigfqOkNv46xUGIgs
    ZHA/oDNr+h6hWMIwuac4h8nqUrOLY4pYPHDDD6+5LS5eZwUU/gx8hs8UnyGKKvBaeZT10dBv0dfoawPrZn32VOn01AKi0ptYl8cku
    Na5bsf3cvfqN8cfSN1X+jh+ML6b7NftNexNvaX7bcq2Ej8skQqhFCybbm/Y35P/U3d5uGxv/k/gbHy/y8IlEhFaV5II7c1/haL5L7
    rjIYmaQdZUQubCjcmk2tdoU2Ua1cZwD/6DzCeTDj7WyHzsbmx2THQQRw/ulfVVwUb+43SjVqw8w+0AFj3ZBjGFouMKo1I+VVizvLT
    CE7DYWc5vDcrIKwAOlWnAZyhXgRoNWACRPHaISrmMjCrAwRh0Jqhi/VdPArXhtk7U2UInt1P5z3eCNwAv8vlOcBJoKpeDj6ByQUnl
    ghymOexS6gRDs90F3e20zk7r7LTuNNegdUB/AwbW9kOhMh1UO2QKyDYkz9gWXnp069ajly6aXTL83TvvOjw8afzliuW/fODyKx5wP
    rl69ZPbV63aTtZXPdp+x4cf3jHn0erssMnz1h08uG7epOF/WbzlvkXzNm/OaToeeugnlz32GOCiDXDRCXwRRVV4klyq4dgSTQqVPR
    HZG1HHKEiG0xCZXBAZTf7KakMIokpHVTqetlNLzDyr4lPrP8L/W3KyTLUf4QqKkvSsHkp0B9D/C1QJ41QKZ6mF3RUvVbxTwV7AGSM
    oZjLE9QltCXh/kDPGoMLImiPJRp2K4pmsywCg6aRGhzG2FzDLSB6RdZFGszvr/ljTmH6ePIaqB6GLP9kHhtZ3wBqfogI3HGvuLU7p
    DBsErni8LBRm7UaTwUTUFjBnbLzAs2pVtEQLPJLQA4/EYyF7hCKVDZex1NnkklBpgijMS1C/G5WqMwPYNQS8UFuKAlYnHsAwyCtCW
    qSqU6GrYi0P0XkoWx2PDZK3tobZP2LnBdMfbN+/9bLnqluGxTbPvvbGmcPcLovBGa96F1cK2fsXXvqrX11Uv6xKIq8sW37hrxfd23
    fL2u2fdl8+6c5Mc4h3WZx6G676rOSDNzbv2nDTTllOAY7NQyPYYewE8Mquk/071JjTaiMIC0irQ1hH8xbIc8jCzcI9+ImdSDfLMkK
    Ln0A6/BzoizvBu9uGOPxct3oP7iHbgDpwTdGKJq5x9eAwGAtiBrsUBXKstxf+kHjS1SvyEK3livNpXJlLydDJMhsu8jnGRSyfx9zs
    0FvE0KnvGG1ItOgdZCz+p0G0iLbcpNwkG2QAWdF0hNhW9jZwI+OoEl8kP/90ybbUK7qX9e/rVBtL1qXuD26JPpB6Kqq+OrIquiy1o
    nSjbqOwPrIxyk3jF/CrdEv5pZal1qU2zbjgBOnsyPjUDSZVpbk+OFwaHm0uqU+NNo/lOW1GDHolT9RT4smEzSUpbiX/XOTVDDMmeH
    b08uANwXXldwQfDu4OcmkOjNoUQj4H4VQpjH1cedDEhBOmymDcl4w54jHO7/NXVFY6OOLgwlGzIWDIGJoNEw1zDB0GjaEHXycnS6P
    IwluI2bLJcsByyHLUcsKitrir4wkwaxGPyAk60FXjVsI4F3V0Z3F2v00xZ6kOAYZXjDS+4FcUHenTzVdFAPyRtFXQ6W2xVLREKC3F
    UV24FKetyVIU0cdKMRrEQjqb2dnZ2Qa/qKXoTSgmmUaBrAGj1yZV1tYo2lcCk62m4HxIGHUqU378/S8/fN1Vkx6e26dMB76Mk3MmN
    o66/YrcTvz45CubWn+xPvf7qcwXdBJw91X3zsncd8HU9fOoVUxqwt5FtROvP+U4a9Ew+comulckf4Q9h92O6tAR+cpSAWdQM5qIGJ
    XD7jjfuUC40LGwbKmwzLHUtcupq/XWlI9zjKuZ5ZyVXeS8JHu9956MrqrCHPSEMGI4k8NZWxkM+83gn1j14V0pa7RWv571R1O1DEt
    SWlOMa5diMfdwT8xcEajIVDRXsBXisLVDiDChl+JNXx8dfmUGrDD6CuBQzCl4dsMU2xiN79JPGd8VmTwTtIgXdCbIGlWMvvxXux0O
    p9fl6F8zoMoGDOR+P7to9sQV04YeUIUUlChqCSo5ZUw2W22FGuYDOo5Om8VJVOcvv33u+XJsZNyL+V2Lt02y2K2O1HlvLZx1wVkX3
    FR5/WdrD7GBekqSvwTcLs/UEa2pQOm5c8bM2Pxc7ssL5tgdFmdmdlvYc9a2W6dvuwYrG45mgOxlQPay2Cq75wQ61KvUjEVvSlmtPn
    3IG8iGwz4vo1X35A/sNPubaSqnzWKz+nxCfFrB7UzZbD53dRkdUFKRymZ9ZfFSap2SklQs5isF83Cx3OAmOKYPR2LuLPgsfoT0bqL
    nQjGzF3/jzXuJdwQTQ1o8SbtVe0h7VHtCq9JmY7EyVMqXktIe3CQ7olGANb/2PFvG+o31hJWxijXjOpTZ4LaGCb191PeDHAhLW2cv
    iFJRevoKzh/9A2kBT+fbtsMNA5miBCnFVKq/YaCeTkxhS//kiGXAG+yXGku/0TbYp1iDp5EbKM1OzaWk6FRkhllGa/oewYrnArLgI
    tlc4HtltnwXFY2CuOSO0Jq3cuPnKC1f03gOUOlSoFIHUKkFvygbrL90PJXZ6difYXV8D3lI1htTFqORt/h07iAtm3gf9qUkny8o+d
    zpSqUKZXAmWZXJVFb50g0jaRVvbg40k+ZUS3PzyBZfg5ZRLqVOKTawTyvalLIjaXU4bFafmIoq1zEncCIVSSSiEV+qPkurWsD/q0t
    V19Vlq3314ZAfnFSw7WLpdCoYc0djqZTbFnOLpKG+XqfTclX+SLU/0iJ7A9UPtDzdQja2HGkhLT1kn+wZbfVLksVfTmSyiTATySFC
    zGQO6SAMeY7sQ6PoQjxS5tqBwBQWgdCpBmVOjNK5oblBWd8orHJYiuA5MNPYdtq8Y9sZs5A/VvhPZ515DaoBsWJSZkBItGah2SFDl
    AGRedZkgwJEBfNQ+pcphiJTDUxBSP9Sc8YZzHV97yiMlftI4ZFqOhvxD4XfSOlSv1sM/IPWVM/p7yMGlpKanL9/fqLAbgrLnYN39e
    dPOfrbgedWA8/NAJ6T0GK5DiAhSyFB8vizoBo9AAl/LCJAliIAiek9VKjNWqx1h0FWbVYx9PDKIcvWx9tAKBsmUAINyt2AtA3qM5A
    5y4/JXHHy4F1SpsxDttOXe+01ZVL4U2XKoOmUA59LXzZ3welvCe/jgvc5AO9TR+Ly8E98x/1kDBpXdwAdQu/gD7y/832HvsPf+XRR
    FPfF/bG6sd7p3sf8e/yH0WF82PcF/txnnOHHBivledsDZmw2B8zEnLSZzVabzxBQxINHoUkhEkrGQqFozBfIKAKir6yqqazM1vgye
    pVS5qpYjlOxPr3HXriYC5tdARdxJQWXyy74PGWJgsymJqVIKhlPpRJxX1lPfr3s9WEU9Pp8fkwETGN/HUJgjAhQBea1T9b7o7FAwO
    /3+mKYlsd5vZ66WsLYYx5SlonXxDIZvd7A2mIGLhavq/P5/b7aGj947QdxID4n3hF/Or4/rorL8WR1XLZmzfGN8UPxo/ETUNdDPpb
    tvgCeg8lGfBATjFmvlyWE9fWQlbLDFmRYgfVPtB20HbF9Y2Nt4rAXiwg9gc7DKauzlmGZwl9bJxTbwJZ28cfdyvwcreUbULOC2Qpk
    NzRTXFcKvYVVSr53raostfanBatTBVZnyvXj4tn5/yfjnYokX9bZhjpxGP/rbGC/YGL8oxOGYfKL9tzz/BZF9n5L47FZGr+Nm/Cwt
    xW5LMwhvuH3uANbrHSycFD0CkzblyaHTxdJ5gs6b14GXLwGuDiNO2QwQLHWK3rJqwTrsdrjwQ4Pq7coTGZKWk0mC0hsNFVgJgDuZD
    qRSKV9UR2rdNFUMRoNy4DaEJQy6HKnUwBhjvhpOSRV+STJ7/NFPARbsb+w0o89yJaKRaP+WCRCeshVz3iEGEi+F7KyDut1Osz5vH7
    wNtKyB6G0HM2a0xPTc9Id6Y3pI2l12l1GGL/VQ7vbrHNsHbaNthM21mzDNrF0+KUDllgn1et8wSBOAWocV3a8UCagMN9bWMdWJirX
    lqXomqAZc0KiGQsWL0S8R/HIW4FVXP8VD/xfgF2x36Qw/nFmOAOiwixZ3HfHlgKRlUljBaw/Iou3UHTCNQpTsM5TjadT/YfPmJcHI
    AsRtBOoPQuoHUal6ITsYt2sR+NHAZvHGoh6sp7Rnj0pXYk13pP/WuZXuH/uJnGuhNvsviOg7FUFmhpSykKfT8sRpayqUVanfJxLAb
    IKe8pit1stPlfaGhNdJIz8Uas50hwhkYhLy3HJKNhoXnemFPstvFj23aCp3O+t0NX4BrqFBylUiMh6a3MEtB9EejPVd63FfUr/HRm
    oEqUrU3V1uPPMJcEz9ICyRBUteifgnHQVFglznkGrC3++/Y9jK8dPGn5+7h/Y0Pbg+Cd+lnsXH80tP33U37xp8s+idW7b1ClXNs3/
    BR13ahW/AONeimrxL/cgKf+SfG5QakoJTlfTrOxFFSsqGE1qeMW4ipnuGRXLg8vTV2Y3ZB8ueaLiYOzdwDvBI7F3S7+JWcwxbcXow
    BjpyvT1gXXpWwO/CmxLvxZ8XTqeMvr35b9HWmT+tzSqOo1G9YM0CgRLUpI6VJoOB8pQTUwUrTEXKUX+TBkd9jI64mVlnCsZjpWUaI
    F8gb3kKlRKtspGBC/i56uiXhTDsR7ctnuVdyMY3j04IdPtu5NCW0OHQidCbIhqDbNF5nGGP8ETXqwbt/h0H7Wt81jbsTZl702DslN
    AkUplAQEcTUrs3obTPdb/lvB14FFZix5Vd8AQ3Js/CSN/clfKkHUEevLfdVcHK3ryX/TP4YFfBSDdRhc2f0wui4wC3lg/VpNYPFo1
    wDLTChK6dQjHnLr//evvm7l6g0xLS+/b1pH79tOf7Jz8+MrcG0SXG3c647z605kPZJvu+5uybuZ8ITt10uK6qXfTzeTAPw2K3N4il
    5i1hiwP5AV3qoa6U4RTZem0gk101IBNJYatoAYIkEvswR3P8LwFPCQA0A45yHsz3nbvQS9r9jZ7J3rneJcC1Z72HvFy3r9EqXql0w
    Uni+tezYqYneHFnOnT/OtQSQMbf/ozZNOHymr732n8Ye4xZR56O31fal8NjkDuT3T08BW5m5QUrD40Bbz5a+C9y3FoH/jE36NA/vv
    uAO+lW1Q8+e/l0BWeY+rj3i8C/yDfqr/1fB/4IajVE1aNPfrA9Z4tarXVVbCj7Lyd2KtEu90l+qwl5QUVVopLk6i0tBz5Siy6gueT
    1BqNOq3PkgzT8thYVYhOu/mS5SAB4Vgy6YpZdTGrhfiirDYk+THuANoQM5qI5tBNSZWi289xE7VztB3aVdqN4HiKFUO0UJuy1ZLCX
    Ftx0+VQ9fP/5UAo+4MU9q0rbrmCEe9fxO3XHhZl1rAme4ZWYfq+enTpU1eN9btNBn9Bh2x54WdTbrpYsTQKFWxT38gdJ+a9eiV5AS
    hm1Cm2xMj1L57zi/lKTb81zBcRLoVbZa8GaVzl6BzXuFS77zb+kO8frn+kdI+hx3zEIBQ8Sr7KzvOC3WewO0IltAqAZGmMoBgfa48
    dirGxWBL8/ZKUL5RCesWVdHVosFkT0HRowMpIEo0GvEo9wZJIG8/2+apcPp/o8kkupx1sST+8oMNhd6XAnnW6BKfT5XSUxEJiTBJi
    BiamD0mSwaAnCHN0122s3DXJ1eU64WJddHpA7ySxjH2Ofb+dsUN5Z96JnXvxdchBDu1Mj6b4dSGdTD7edrJNWWNoU2Sl36akRybTb
    1mCYalYDdwA1f6aARoOLSqW5X+sKJIZLIbiRLFCwsIMWxhX/bta8vCKXOsIp2A0Ck48zGUzmmzOX+Ib1HjNVpcABReuK6Qy26S1Gw
    x2bSE+5WC+GFqmNmIUaPsQ0DZB/lrY/SK77C7icKrULGa5hFtQx4IGoo0Qe7IA0RQ4GmBIirth5Ckd7g5Ph7fDd6PjBucB1QHhc4e
    2nW+3tFvbbexBgnkH75QdspN1EY/TLwZ8/kTSWUNqHBXOMWSMY4SzFc9yzHDe6HzM+Tp5zfEhvJYynWDhJ/GYzwo8bxN8RsEuxWmt
    PxKMLI0QFOEjkyIHIociqsimRCQST/ikBDKolS5aszagJWbtfu0R7TfaPAjqJpVWq1b5DCo26KZdBN8cH/ZlRZ/PLfqCogvBCwd7c
    v+Uq+0sExRULOu3C4LdLiSAxVwiuFoiwYTBfpcT8k7CEMz47Q7o4SAxZw+5XPa7Yghj8J0YlovHJDf9CwZtMaM6ZjQQ/AJOI4RcuA
    2JMOhtcuVBEQdELMolWVGurqkWV2cgE45Ui3IsXi3GZHMikJiTWJXYmHggcTDxTYJL7CMrwdhwgq3sdMBpDjkDAU51yO6s2fGNsmQ
    2YxeRY1mwDFZ2q4L25+F2AmLg1iwule0BAR8QsBDjVRipJqo2qg6qWNXz0JpEo/FUeLgLlR1Znb3Aol+L/DHwtVJ9nXQWwnVc5Ps6
    3a7ewppG2zFodfFfowF86y2Y2iAkvX2K36VsllX175qlGZoW5AWuN1QA2s4QmbbO/2tFQWbGd8XAACgBA+BZspq4nW6Hu6jqx3e5B
    yZbSf6rbsI5e/Indjj4flOAzrC2tbVKYYYJM2dY4zZblc12Rh3z/s+//svPrwko0FlHNdhLHf+z5i9LXi5gKa0IMM2nfs02DcyOhJ
    jMqd8xfx5AUYI2gb47n1mNEqgGz5MnP6F5KPBEGRPTRAP17HLbFe7LPauF6923CXe4t2m2Cg+5n8rs1jxn2iHscu/xv2E6WWHXYRG
    XYOZey+1ucnXZurItZU+YtpW9XPFuxacVXAKssadkdzQjRaMhKZSw+mzOZI2EapKYqTJo0zU9+Kg8E9+YQLoqidFrJZTm00vTTDpZ
    bzAkhPt4yaehDUYUDEqy0dFslnBGapYmSnOkB6Snpf3SEYmT3HXOjeWSmrZ3qB9Q71cfUbNqsbZk36AaxKkJfceVtQmcoob/4DaCT
    Fsv1YnKqq3VObh15Mw9fuO7xCL59iMNGAPV+RMoC0HMn9xp5cq4/t314GkVptUF6LoP+aGLLX+guO++TcoO7qZ3DtlWQjcJFqaMit
    YNE1PaiqtvzIxnD931xNH3h984cfXqeTuCWt6pM82/b9ID3UspmV+u//nZz1587hWXLdk3f+W993Rc9YyZv3H0RcN0LqtFZ3aX3D+
    /77Bi4f3Kwk+sP++cS6bPoT5CKdB+OvsZ8oJrHdlBAe4pWc9nFHALGb0OWraJGbsoOuwhr1/DYH0wZmjT9+D5u2OSNiiBjTdfLmG8
    CDEard4nmWHkidpdEp6KDEG7IJu1zWahQzgiMIKYvOCWoeSgRDjW73410z3vx1wgsOIx17HC0uiw/7ThcnyXoUgMeeoiLS7Xl0fGJ
    s5PXJh4PPRw5Fm8R/+c/5n4S6o3uMPsR9wx1RecxcFW4EpVo74FT9Sf7T8fT1O1adr0F+KLVIv1K8jVuqv9KwM3+fcGng/tjjowCG
    a3nk+Arb7D7yjsNGzDna3YAjRCdgGFQ3F7+AxTHQ9ZDccld7/fg9W5v+/+aPPLQ+bQf/Hhbbd9SAP7Wd87r+S+ffGl3IlXHlY2fzY
    pE4KvPfCnPz0Age4ABeqMB8ksQSd2SzpwjOzgQchpyLxq/yj6h/jRwFHpy+gXcU3EHneMCk6ITohPC7ZFZ8YXmReJC6M3iQYHXQhf
    ZhNabefbL41eFP/OrVK7Rd7uTvJJa9S9jt/C3+m6w/2w/WHoGwYj0ywKHmUdSvQ66RqURY9utEhJjX4nq/b+yimF9aZ6rnVrAG8KH
    AiQgDstSDFK5K0xbI4FYptiTExMvTSEziBtyoJUW+eEk4Wdn3AcKy5HDS5FQQGISq1KsDmoO9S/0KQubkoesg5dXGEKh1C2GlVVMi
    /TpQisrC6pn75934vvPTHvjfPsvMW54MHX3sj9gPVv/JoxeqmUvBBwOz1jV39x14OHz5okOC2pkZdi5tU3sIHKwrUw2tvof0yD8f7
    4mbNLLikh1Jl9Cox2FVZlFH82xPldtIr3ZJwej8sZ8uscoYS2TQdisDMhwXiDOARDkuBHBr2goZ9oOgPa4Gr6v8Qwdqej0mowHnrw
    zTtTJasLg8R/11kcH+qMNiiLdqC7jsHfSSoHP26UV5QXvv2hQrDTxFk5CjGDcrEHlYCOCQpx6rjE8p/tDHMRcQCjBpyocFY9YMpVO
    vtZeejGDpYUIOa2jy/73cqVv1v20Z1KeekHd9z5wQd33vEB+9kPSyi2PPrayqNXXHnkqtfwhwVO3vrRR1spJxO0GsY2A5wsoiA6JC
    /UOe6xk0oykpxH5pNXyCu234ofWj8UP/L8j+vTwD8dRtFb4q0mdf5xnnMCsz0zAx2exYFrPTd77vHe439WZV7h2Ot9iXnJ+rr3db+
    ae9niDgbByLH4JKeGlSx6w1R3/VaElyL66c2nsjMUrMf1WwXcIewXDgIUsYIolTw5hEUn9PYqBsax/h07ypL1aSDT7RDUAAm7PELA
    T3ryXw1APYY/yeE4Y+mzwJlIo/Cthi099Zjj08cveHuEzcS7+PJv13yQO4LNr72NddPFdzdvPuzG9z/4alOVWbRY+Mrp2PP6s4Ac/
    7tm/VNPbqC28PtgC88EzqxGb8hR2TBJtVp1nWFNxVZDt2FX6sXU4ZTOyYGD/hrPh7TVZagCV/QQ9hmEQmXgpvdgWXZj4NxIIoSibU
    nJh5A1KJaVutRaThcCXpR1NSiNg+6DCmveIRszdtm+1H7IztrF7Io9+E1UnANXlicb+OOK69FAp0n6lC14Z6zot52xtG8qSXmAoOk
    ASnmSAUydnzVrcNuPTo1VFbegDO6lU9vt/Z/wZLCCo30dNH7jGRo/8+QtV6ytsrsEznbXJT+5At+kAK2xb2y/m0/2UH5cteg+B+ew
    Wp2Mc/HoVcrmS+DMn+auZa8FzoyjKuyXK0YLSwXykfRO9CvpWPQH6WREfWlySen8zPyqq4zXJDurbk6urro/eWvVtuTWqr1+E+EoG
    sxTAEKrUnHaEEH+VIUryDuDQEuTf3OFFNSlJLQ5puHqiRqrccIXxEGdjtdu1XZpGbOWOu5Paw+CN+DOlkmrw5vCW8NdYXZ/+GD4aP
    hEmA2L1SVzT2NWBS3oKhQQA+Cit/kYhdTm/l0Ww84AiSFcvA958ieRO3+yu4Sr7Ml/3+3nUA+U0lw5TZKGKlpZ6sgMTlENfjHYhrM
    DqwWCxkTCgzu5a2uyFEVIttpaVXnanrA1Bd0XcS2dPUFZCf7ruCvijrXvbv/hh+3vrn1jw4bf/nbDhjfIa/cqiLFn6sj0BQmwS134
    nLNLRpzag/Hu3Rjlxt/+5lubb3/rLZCFaSALS0AW6vBlcuk97h+ChMV2fKF6hXoTvp1sxQ+RLryT6B5WP6LZpdqteUXzgeaIW+PmL
    E4Ft81CQCDCbJcgOF0hSzKjGDzp2eXpdKY8lOR1Bbw3YuNsZVImxBfsV310dtF+rauk5XA2U5HNVlaE6nAw6ZXYZCIB5K5DrIbXcd
    qgeMSFQU88KOuHIylYsb/8YDkp78Ff7hw2dm4/6itL/YpEFSFfceUtPwr4/+3aLzQVHOY99J+l0P3BYMsc7ba4q1Eq1aoIJO/2qDT
    qqEclBrBb4y2IJN0FPTh3uQep8yd3Bw0BoWD9tOLCV4TKptdBG3VAdAt2rObHJjHxeZM2z5p30+wLAqIYyH1D1ccF162YPSKzeOgm
    AUWywS76YfrY0Rsn9v19QH6ZWVeVBq/o+2rgO5mmwt5p9Dxwg0NlQQxYsKvkkpBYKcrieeJ8cbn4c1FjM/IzBLBj1QbtDJUqZHB4x
    TvsYMcyL5MefPszXrXRoEN4H6bTaATcEBPLgns6EZxR0Td5Vf/WDGXzhbJ00/xd7xlLvUOWfNuwPZy1/csXQMUBIJuuWYXH0ffucy
    nO2bhv6bqZyvKHP+Qmn/rbEKQCW4Zi/j54MwH43IXa5Op59mX26+wAFoYZFOMB1WdQRLe67HdYLCEXAiBHOGjh+Yn8fp7hRXHo0yu
    fMP34U//oE996+vP+jT5vv6ofQgR4Vjs8637A0DGkRG4w15rrTMPMw80N5kazbG4xj9ZaY4Yawy5Pd5qN4xpMpnnnaeZ5l2uWe1U1
    mkrvaM1o7zSNqpyrbVSk78hwPHxM0/DhjU2hWruZVvmDVjzJesh61HrCyiIrb5WtjHWMyWo1m0L2aEARbBTiQyQ0xh8KBfyhaE15o
    bKKryJVYzJVVeWZUM0YmVYuONKCW8Y0t7TIzaHSjNofKytN+LxqrCmplevRGHWJxLglrZbR1NbURKN2ndEUdDrkQLbcsdpBHKdiPn
    8wHqPl2OoYiZ1qQplgcxN1PFHT/qaDTUyTOLZku2uIjwOZVMNAMrDRgy9MTlis/dur0f/Hjo22M1aIhwi/GoTfoQj/mSBQRIFgIuk
    SdQZWpY8m2XgAq9SizhnACVVJALsM7kBhzx3dRqpsQG5rA3jwFOFhhA7p8l8jFoIm/yHc60MAm3f6dQUu7ErW0CdwNyn7riClT9IN
    aeFzwzabXfGAFatzEFDClsJHQaeXhyDLmT7X55cuHjFPqls2fFbN2LHKbPK5VWUXjRijZCdWlKYbW5TqT5TVSiXLzJu2bPSYMaPrz
    5nZt5tyM7lLnjp6Qd87Sv7Wlum+5IWFwqDxAFy+GLh8OnB5HV4r176rfpcjL6lf4siDXLe6m2M6Nas1ZL7mQu5CD7PF87CaXB3YiX
    cRxhtYFCAIs4T4OWvBdzDbA3ZiH6MsDISsZ+ogi76gg0zYNEZnMul1IUtBB/EoykfJGYrImB1TUESV9XVqvBcfRUHwQGw+idWATrK
    C86/VBd1HRCxSdcQr6mhT+VZQRyLVRYMQV9REBebsOwkWxf/7bqL/Vz0keLwqTsOpOaL2qoDhPJyvoItKFF3kGVhHE+DUP+/wCAX2
    6lQ2gLa1AeLWFA3Ff+GO07noX9TR9Bm3tLZPrJul8MPHyuL2z5ZMuapzqDYq8sqq1lFJ//qz+74Z1EatV7dc3/fXMxgEtNGt4OU0A
    IfokROfJddZHaxDcDqY1/Hr+nfJH1V/0ryrV1+qWWghC8gCdiG3ULfIuNiywHaRk7NLjFnSMnqtxiAhZZ+i2KykJqeSykZ7tgthHp
    WjdlBWPWSt7LJKapnuYpShT4d6v/qg+qj6hFql7sGf7HQBBPXbGaDae/vaOqmK7/8m+rSNn/uQA4xCIX9yFy+YBOfe/CfIlv9kp9F
    v8Q/af210nZKKtax30K0JAo0sdDrCZvY36wWIOB1EGhpZ6AcVPqu+WSPordAIkUOwOJsEGtkEs0B7vCRbIaPTGXg4EyLCmAMNOIVS
    p/9aMZ1r6fenhnqlDbneF1/KfY2tL72IbdM+3rr1Yxrw0wdyJ7Bl/wFsyZ349S/+fOT++44eoTNdYOdT6aXfmJTKzRU687A4hGzpZ
    DyNtBkvxEAT9aXG5fjqksvK9L9RH9D9QfMH7YfxP1QcV3+q40QmzVytuZm5h3mSUTu8isiKGZ8oen0hR0FL6a2vnaaSRoQyRW2Ejc
    mMud7urQdONWUkvS4p4c2sBgXqo+qYZOYw565KI1PQb/ZN9M3xdfhYn1g5dLKMSujAToXeBsXg/3f2/n9enB7qziYM5XRpulRZmjY
    GMaV6Rf5PO+LhAZorFKdTMfai0adMev2oSJ029zX+yRXX/H5Zru/5j29+UxGpjiFTYPe/c/c9hw/fc9dhZt49s2YvP3jZ7lz+2Zya
    ypOyQFuv/JeGhbcePLTp1kMHC19CszOZKwAZ7LJwjQmntRN1i6wrrTdZ71Tfb9N4CyZ64LVwIBAKh7we+17yFHKB36tVNqOFPHTj5
    1PyxMS5yq7PUEpvEpR/sKvSGLENCSZeF4nWo5Ra18wDcNrrPaF6r9ejM2tOaIjGXYqEYMQcnhQuOGcnwuqwmO67ZRA8CxsDC/sClW
    +b+xqKe60L2n3Yf7uB4D8CJpDPUiTfbptgcli9/dq2SKH+TdkF6PsR55qQhx4cPX6NaNOZbOFqsXbLfrxcMfOW0E09byhbe5h5h2+
    ftsBtAws67J6xLVetkMZqcZLnirrwYP4IkwNpGoX/Kt8oNHtHEOs5qBUtHPVk8MnaX9a9aXt95J9t7znea/rjyC9tx6o/H3nKdrL6
    +5FWvU3tUDVpRwZsdoe9yTNyfeiO6n1m/XTbzLqFdYvqr6q7tv6mupvqHxa6Bd0t9bsDZDKXSoZjFXJjQ7XbZTZp7IZhqLqyPMyW1
    ZhNBkaHGItY39goWaQWXQ/O7mKCZbisB98pe2M1koTqNdOGSRP9c/wdfsbvHlMxNVyftEsyRVQHYKfc2pHESXF0i4ZRx3SS/oLinB
    z1yJqL/3IEp+j/GlGEj+6ppzRWdo5Yit9KO4cNmHCFb3qshS966mpHWoPeqC3qbLIHUL1nWADXBiGyjoSio9kVQE5XU+NwXwPoPXd
    9Q12gJoCEERbF7KJKuBDh/v/zM4T6u+qFap33ufxnyJn/Co3Kf9XdJNQC5O4MORq8gz678nlYm2KJ1QEea8FErRcgqqPo7OLtUIJo
    FIXjUQIA8ChBb2720uvAyNBOz1IlJNBoCByDJvh3nwDQjx3pUZyzEQrfAPZ/NNb/IWQ8Fil+c8RcQx0dlzJnW3fe2g3n1o8pv+HpU
    XPnvP3qq6s4u5FCgVV0hu/peGjr5PNyr954zuHNTzEpH3DqJr/bITbE64alsg0Jr9nmCl9z1qWPLggJJrd/O7CvvSxQ3nzVqHMzmW
    D1JQ2LV1EP5TbQzPV0xyF6XY784MFGj9tDHtLt1r2oe0d3TKe63HSD6Q7TI6ZX9O/p1U6OfoX8FGLxZbKdY1kNF8K8oLVbzLzFKqh
    EQ7IHPyhb/PWRiKYeY6Q2SKJeuJHtwY/LQjoN/n9MegV5eW/Qu9S736sCbfHpzlLqFAATHVOm0E4qU43KFoy+3sIkOOWgMwCbzp25
    PTq93q0NIJ3HEECFuTNlKaIN90u4RThz+jGWPX0uzWEH01DZY5yrW9E57ZVawci7jMG/d25+Stl2sYUSg5lHhbvvd2fPqwoa6X+hk
    CasW0EytFLZ40/HcRaMYyszD8UBiQ06dreDJBzYzZm1CgIbMpzBoOVC5sIkud5zbnGSPC7Rcin9xHdMMBKRgqE4dpiFoFSP4jqnqz
    7g95s5bT1vVgsSow8GEXI6qL2qTfKWIHdQgzV08iRx5uRJQ4PyzySUnXnKp6pF5B32Xxmo/XAr67BMwTZ42hSJ1Ua/vrOxlgCyqoX
    CyBfE0FYUw+eRHcTPAYrTmv+kOBusLO7Fhwy/QpvawWL/2t4NT752tTxF0YcvX3LuW9sUMnyjmJxX39cyYwXxK8TYcN6i5wrZwhwB
    pcEC0IaLgAYt5Db5joAlYCXWOst0C/FQ+zAQasdLrB1SR7i95Tf4N/zb1relN8NvVr5Y/WKLmUMudHeIQZXY2mKxtoT5UJiXqqsqs
    VRdGeatfBBXChhXVrdYrdagVC1IUjWpx/Xmer5eZ6u31kv1wXp3RX1lfaQ+XF8ysr6lPltfXV8vt7Q019U1h8PxsrJ4c6uqugeX7Q
    q23NvM07VdD8YqgyQ5DAYVcmCHw4fvNas6VETlHl0J7TvD98atSj/p3nir2ZcpmkAqnzhKp3PrStT16uN7sWbgn1f0A/Oxge/4KDa
    LE4656A5OQGWRbsSmNO6lmwV6XfwxWkkriqkbufj/097ZhsZRhAH4ncvtfaWb24/L7d3tZXO3d8mlOXtJ9hLzyeXk0jZNivkoaaKt
    iNJotZV+gLQoaosiQYUmQsH+EcEfgkq1uYr5MPijjYJQ/BGx/6QE0/pDabAoauid7+zeXUxqxH+C7DzcO3s7Oxw7+87cOzvvzPyEY
    ZNgDC/cWXycX2X9Wrcwk/8mK+2g8YdZTx2Nf80KERovU7sc4++m5a5UoWEsON5QEznC3Y/5ufswM5fGnJwLs3EK5uEUbIA5tZRLz+
    bGYKjiJ7yPdTcnZ/I/TGNsKKPuIGh0qJP55bQTzWpeQYs6Saf39+EB7/JKKd7FC6nMA4rQTajItAb5bkJFplXm8AhFhq4kRKgIu6p
    CqWY3Cs3jl1Mc/R/QaMOPsVCIM2ihZzkP7bVfTbN4EOlCEabib9YQgtKfAzG8gUp2R8nFPFxYiYWQwrzTYpeNkA3zRGwRyzvkbK3H
    HajO/Uwtk9dzs7l5fZJe7rYScIu15Gzu/aiI6Sv0beIhIpOqQ/Tl1ApNjZLF3Dm7ly0sYdGe+9Lop7FeOxpKvQ49hdqXtwmvT2MSt
    3kdWKvOY//gLaxVGvks3e0Dn+BT42xYaiEt/ACbltbE39Vyp9gv9qmHyWH+tHhanRAn1Fl+QZxTv1CvqxVYNQVN4DWRTmi6mFZYtk
    Gf0aTik5FV5YxClAuqgj0CWY3Em/CSy4lG3VaR0uVaItGkqXFNdBoDjgxzwRhudBKgju0X07zUKBGpQXduVwOiVh+lZ5+JxRoisVg
    0otZHVFHTQhHVg31gHqsvnUEriEA0TBB4Ag6FEZzgUjtl2dMZCGCNtnS6nLZoZ31TZzxeXwHKoGI5rtxQVqml1DxInXE4JsQcZ24w
    q4yN8Sfr50i4tETAIyfQ5j1RMnrXHQq7C6O6dHItU3Cu0dcs2doZbbOnzVbJxa/c5qvtDq7L0WW4q5Hiij9bqtdGhUyGLUdzz/mVA
    Fvpval3UsgoGdYb5pXqAOdJ3P3xZV33gvprUHsZi7pU6dRb5wHLJUOFULnWFov9F2Pt99aNkI4iFr/lFDJl+bSMtSasWeYV2wHbb/
    b3HFecMVeyPKbz2jrbJthetrdCprhHCizwIUFCloQl8Y54x3OssserSbfuxbfivxw4IvvlmeATVSllpzJNqXaEng+/oT4caYu0RUn
    NQzV3az+n1D29fcrExMTExMTExMTExMTExMTExMTExMTExOS/AYydyIwddz1Qpm+3G8CPjY699O4fLWsb2tveMzDWsmdkV198cHin
    0OAJ+L0+ThZ31x5gK/mgVNG4L9nR3+Q4WFdTDf+nYIVXdWml5bOazOdREirpFpJAx6Z6YT+MYqm1wRDshXbogQEYgxbYAyOwC/ogD
    oMwDHQ32gYs3QD4wQs+4EAGEXZDLRwAFiqBhyBIUAGNsA+S0AH90AQOOAh1dFdb/dcEfEZ0o0oblANkjj178qnxk6EHx0+BngpkEh
    jM8e/CputWYTW/4URh92XrNXhSZz3Ml1iGSWSOXIObsALfwwdwBb6Fq0SAJbhFRAo8/hdG4SVkTOdIgTNYEgkki9Dz5/DuObzje5m
    EHfgLL2KO6/ACluyCzjyW3FGYwjSa+jW8iaVJGYfzhh7/Q6D3yAS3X/r4o7lH3V2/OJxGobxbM/QYjRffHorl7X9MWtccdKs+Z7FM
    /gSPL3AyCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKPDwvVHlwZS9Gb250RGVzY3JpcHRvci9Gb250TmFtZS9GT1JLRVYrVGltZ
    XNOZXdSb21hbi9Gb250QkJveFstMTIgLTIxNSA5MzYgNjk0XS9GbGFncyA2Ci9Bc2NlbnQgNjk0Ci9DYXBIZWlnaHQgNjc3Ci9EZX
    NjZW50IC0yMTUKL0l0YWxpY0FuZ2xlIDAKL1N0ZW1WIDEwOAovTWlzc2luZ1dpZHRoIDc3NwovWEhlaWdodCA0NjAKL0ZvbnRGaWx
    lMiAxNiAwIFI+PgplbmRvYmoKMTYgMCBvYmoKPDwvRmlsdGVyL0ZsYXRlRGVjb2RlCi9MZW5ndGgxIDQyMzg4L0xlbmd0aCAyNTQ3
    ND4+c3RyZWFtCnicrLwLfBTV2TB+zpnZmdn77G72fpu9b7JJdnOFDZFMSMItYKLcEmpMuCOgJOEiIJR4QSSoULXeBayiKPiyJIABb
    I2+aqvWV9paq1aFtmi9paUttbWQ7Pec2YDYr//v9/9+v2+Hc3vOmXPOPPfnzASEEUJ61IMY1Nw0I1mKlN8T6yCbveD6eZ259uOHEc
    K7FqxdLY2kPj4LgA8R4j9Y3Lnk+v9+ygszCAMIcSVLVqxfnBvvg/uX3rl00byFH0957iOE9l4DwMqlADD/2bYRIcNX0A4vvX71utH
    1TsL8K1asXDAv197KIuTKXD9vXWdegnsOIaMIQOmGedcvGh0/E7JA58pVq3PtvdW0v7N7UWf605/pYXwKUoPqboRU05Afkoe5D7kR
    yv4O0hlIn41MzV5QLUehkWXZ04wF7n5uNCEUQfej3SiMzuIS9DIaRFPRU6gWNaP70CT0NjqIDGg9fhOxKITq0T4UwX5E0ERkxyr0E
    HofXYO60SfoNIqjRvQxNsM8DagT2VA6+znkjeiO7DEYpUF16L/QcbwCz0BJqE8mhTgBK+/IDiI7imffyr4HrcfQJzicPYQmQ+1TZE
    IxtBn9AJnRMvRG9gLFIJqPnsYb8ecogDrQdrac7c0uR+PQEfRr3Ai16Wi96j31EbQC7noC2/Fg9lT2j+gnLEaLYKZb0B2w4z40SIq
    ZOtUeJKEougJdieZB703ofWzBJYycjWUnZB8C6NPoryRBXmN42EcCTUHt6C70OGDjXXQG/R1rcQV+DO+H6xf4T6r3YG+NaA3aAHz1
    GGDvaXQAHcMluITYiR2wZUf5aBb07UB7Yf1+dBI34lY8iF9i9qpSIzXZvKw1+8dsFhWgFtjhbvQSrHEOp2AMrMAEmdWsj12tKh2+G
    Z5wIXoUnUS/gH18DHj/O/onLoDrd+T7ZHN2TnZf9hPYi4D8aCy6Cs1FK9FadCP6EVD1ZfQK+gs+T9Qw8m32VdUG1dnsPYDbKJoAe2
    +C0TNg7u1ApT40ANe78JQmLMFTjMVX4qvxErwD348H8Pv4fcKRAOkiXzAZ5k3mQ7ZSpcpWwUw25IN1Q2gOWgoU+D5g+x543n3oVfQ
    6tuIoLoInehfu/5qMI/VwPUHeJh8zW5gd7AXV7SOnR74cOZ/tRTxw2STAwxr0LGDhz9gGe8jHy/Aq/AfY+U5ymDEwIhNiKphaZibT
    ytzB3Mf8jPkftpvdz36gmqKap9rPzxu5YeQX2cbsbYALjDjYVwwVonI0BvhnMXDTcthfJ1zdaCO6GfWiu4Ff7kF70H547hfR6+jX6
    CP0FVAA4QDs+TpY/Xrgui34brgewgfwS/hV/Dr+Hf6aXiQIV5xUkhpSRyaSJWQLXPeRk+Rd8hnjYRYwm5keuHYxR5n3WcSybFZVCt
    dk1XbV09ybfJyfzM8Xfn5haLhguHX44xE04hr53sj9Iy+N/DE7O7se9h9BRagYdroVdvkQ8OBeuJ4FTjyKXkM/R79R9vpXTLAKON6
    BQ8ANhUC1GjwJT4FrOr4KrllwzcFz4ZqH5+OlcG3GPfgWfCu+Dd+Ff6hcD8Kz7cXP4KNwPY+Pw/VrfAp/ir/AfyXAxIQBbo6QGEmS
    NDxpHZlEmsjVcC0hK+HqJN1kLVDoadJPjpF3GQsTYYqYeUwX8xDzX8zLzDvMNyxhC9kkW83OZpewt7Jvs79g32PPq/yqBtVS1S7Vy
    5ybK+dmccu4B7mD3GfcBZ7jm/n5/Eb+HT4rREBb/RSe+wi6/Jfk3sarVHnsOnIK5MLBdKq24lmAMY7MZFYwdzO/VC3GZxkJf4B7me
    uY5dknmInkn8xKPJu8iIOMX1XFLEZ3oizeT35HzpE/slY8k3yO4+wP8PNkJVNHOLqI6leslb1V9RlC5DeoimzCg+RV5lbm1uyPUZV
    qFz6l2kV+gST2NLGgUyDVW8kDcNP/kOvIdtTClqvOo+sA78+o1gG+x5M7cAHzDrsLfcKEyN/wWXw/aI238FQ2TK4labwfNO4w9qEh
    3IU68Q+RjE/gj/AAwngf8zSeRnRArQzR4zFghN5iAvgdRoNa6R5xlFhxMzlLZjEvcCeZCoxBS/wSbcAMTgHvXPyNoBtAAu4jMdBpD
    aBNfoVLkQM9APr+3MgLVGOr3lNtBz57nClEV6MUaiNvoiqQjU/gakG3o1J0HHjwDpQiD6KN2R68EPT+dNCfBA3gZSiJtaAt7bC3zW
    AvbCQIurAdVv0n6P83QOs34j+hG7EEkjWI4iztuZNtAM3UAfp3O1wLURu0HkX3cEdUv0JN2I4QK43sAi7/EF0LNucPsL4LVcP+5qL
    H2ULYtQSauQvueHRkMpLhuh29iQnaBHseD3LezE4GzXt/dhk84XVgo6aBTXwdXZd9ANUB7a7O3prdjtqzj2evQUvQjOw+0L9rs32o
    Em1VtZLZqgRbDjr2dfwK2KPf4u2gtyejD0AfRbADfQHXf8H+x6tOoF72N6A7a7J3Zn+NrICPIGBoPljRM+h69CfA22RmEJWNXEkOZ
    ScynWChTqGrsk9n/ViDlmZXgOZ9Ae3lVaB7epBPtRd4dzu7mKRgv/nIhpMAvUa1GyF5wqyZcs34K6rHVaXHjqmsKC8rLUkli4sKEw
    X58Vg0Eg4FA5Lf5/W4XU6H3ZZnMZtEo0Gv02rUAs+pWIZgVNgQmtghZaIdGTYamjy5iLZD8wAw7zJAR0YC0MTvjslIHcow6bsjZRi
    5+N9GyrmR8qWRWJSqUXVRodQQkjJv1YekATz3qhao31UfapUyQ0p9ulLfqdT1UA8E4AapwbG0XsrgDqkhM3Ht0t6GjnqY7pBWUxeq
    W6QpKkSHNFqoaqGWsYc6D2H7eKxUiL2h6hBBgh42lXGF6hsyzlA93UGGiTTMW5hpvqqlod4dCLQWFWZw3YLQ/AwKTcgYE8oQVKcsk
    +HqMryyjHQdfRq0XTpUONh754CI5nckdAtDC+dd05Jh5rXSNUwJWLc+Y99wxvFtEyY317VsvbzXzfQ2OK6TaLO3d6uU2XNVy+W9AZ
    q3tsIcGRKZ2NE7ERa+E1DYOEOCtciW1pYM3gILSvQ56DPlnm5RqIFCOpZJGXVoQmhp77IOIIyrN4OuXh/oc7nkY9nTyNUg9c5sCQU
    yNe5Q67x6z6E81Hv1+n6nLDm/21NUeEg05dB6yGAcrej0l1cWXepTaspwWmu8+hJeMd1RaAqwQ0ZaIMFOWkLwTGNptmgs6l0wFobB
    rxXDXZmFQI/rMuq6jl6xCuAivT+jioghqffvCOgfGvrqu5B5oxAuIv4d0SrlkkuMBv0X65lEIlNQQBmErwOKwh7HK+2KosK1AyQT6
    hQlKAB9qBlwO6+1KgnIDwQoebcPyGg+NDI9V7Xk2hKa7+5DcjLRmiEdtGfwYo91Fu3pudhz6faOEPDxYURjDmtGiF76ZxRtloalVR
    ls+z90L8r1N84INV41t0Vq6O0YxW3jzO+0cv1jL/WN1nCuAxCeYSOAqSkhYL2r57ZQAPxTRSaGGq7rmAyiBnvMWOpaGDdpzdWIm1G
    mAv695tLMtNGio3OxEU7h/4UDvAAMrECwNDEjdkzO5a2aQOD/500D2bP0LqX49rbRZ8pUJb7bHved9ne2p+tlYMNslDTOnNvbq/lO
    30RQVr29E0PSxN6O3nkD2Z75IUkM9R5jWpiW3s6GjovkH8ge3+7OTLyzFR5iKa4C1iZowqEQvuOqQzK+Y8bclmMQl0l3zGzpI5jUd
    UxoPRSGvpZjEuhnBUoolAJpQ6INsHkgFX1EUMa7j8kI9Si9rAJQ2gsGMFJgwkUYRgsGSA4mXoQRgLE5mKzA6I9qirqZLZfzgCJYrU
    WKUwBRa2CkAc0R0fnV/zolKpDv/FopRD8H/RWs6mPgexMkQnw2G6LbCMQjKkSOoZnMV/1Mgb+m1sqcQR3M52g38wk6BYlFIkBEqNV
    A6oR6FpIqO8j8rr+hoVQegDJRrJR98fzSY7Sjz+Up/THzO3IAPHI/AE712dxKz8d9EyaMVirH5ir9BUWlp2o1zMfoz5AI8zFzCqyr
    cld/vLj0bK0eAJj5PjKCs+NHe5iPUAYSQTLzQX84Wrr7Rebn0P8G8zo4FvS21/v0plKY8KfM8xCu+MEhPzLac6TfYCpFtauYuwAfg
    5CfhHQa0llILFrJPI02Q9oB6SAkFhkh90NKQmqiEGY/sx/2uRfuN0KehLQS0g5ILKDwWYAvpzmzj1kGHoKfuRMidCuU25l7lfJJKF
    1Q/gjgEEcxj0OblrtH249ASfsfHoU/BG0blA+Olg8A3A3l/Urk72d+ONpey6xR7ls9Wu5hVvX5/GKtD/olSClIDNTug9p9gLr7oIU
    gx+DhrlBWOgRlKZTX50pA16a+QEih0aZ+u7N0D6B0E6B+E2BuE2BuE2Kha+PFMRtzY4qYjTBmI4zZCGM2AlZSzCpYbxUQDEEuQpIg
    MYD3VYB3Cs9APgjppAK/DfKdkPbQFnMj4DEfdrWNWdYX9wOTLelPy6U1J8ChxzDt4n6nt3THty21hjIilIbR0kjHLlJ6F/WrdRS6q
    N/lzZUwanmtgVmAboJEUB7kYUjlkOohscyCvnDSf5y5El0vINng30w2M5vZzSo2VY/NLzKlqFlAwJJmpghVw4B8f3s1HtOh7lT3qB
    lRLalTalndrFathNhwB8P4mSRTwzQx7YxqIDvYx1eVQSFP4qrKdmr3aDPaQe1JrSrDDXInudPcWU4lcSlO5pq5Dq6T6+F2cns49U5
    uJ086tJ3aHi0jaiVtSitrm7UqP4/31G5h5lMph1yE1AlpJyQWcNwOcIm5FlI7UKMdUHEtwBHkCFoipJNQPw2lClpGGGeEcUaAGgFq
    BCiCnPY0Q+qA1Dnay13quXgPHX+W9kCKQa8BoAbA7WnIz9IapKnQ0kNLDy09jDpJLsAORcglSM2QGAV2GhJwDeQX+1Kj/R2QOKX/r
    DLmYp9M7yUX5HmxwXycycd78vHOfCxX19SWykHIzGZze6g90h5v38uuDK2MrIyv3Ms2hZoiTfGmvWxNqCZSE6/ZyyZDyUgyntzL+k
    P+iD/u38vumHZw2ovT3p7Gtk9bOW3zNGYMkK6/L5EqVcpghJZH+pyu0jHG2nHkIDxOO+S7IZ2CxCA/5ElINZBWQmLJQcj95DmAPgf
    Q51ATpHZIKrjjOapeIPeP9lH4bqWP1mg/+U4/Aw9+oK+qrKl2Kqjcdki7ITEw9wHoP6CMztUOKvAM5KcVeNPo+D0K3A/5xXsYUHBz
    FTU3F8RvLij/uagdUickFXqbmQPGYQ6dGXI/pE5IByGxzFy45jBzyHNwHSAHmEJZX2L1I5sNDJHZJIi1ItEBD+jxPiV/UMm3KXmNk
    odlw1T911P1P5mqv32qPgYVEocgUI/vU/KArK3VH67VN9Xq82v1MJsdBZCeWJWcozn+UsmvVPJCOS+g/yag/1tA/5eA/rGAviugvy
    JA7/OA7OpJnpJraQ5ROs2nKnlU1vr1r/n1c/z6MX59rR7vwrA6mqDkPiV30xz/9bCx3ojUJ/BfUT3MhPuq8/1g1pUCZ/uqa6EY6au
    eBMVwX/UuKP7VV32v/wX8DVZMGv66L3zGX2vF5/AUlrb/Nlr+BU+BeNGPz0K5BMqnUDWOQPlkX/XNdPwTcP/D0P4RCgp0/OMQCdNy
    N56iwB8bve/RvsL5sOojfYXrYdWHUaGy6gN9hWcAem9f4TYo7ukrXAHFjr4I3eCyvuoCf60JL0FhQscuQBFCdzJtdMXJMPMKKCflb
    m7oK6R31dMFBnBdX6gEihjd5Qs4hJqV5fx9IeUhvSikTOFBIWXTbhRRSgM2KpvXo6BSCn2hm2EW7nDkjP8f1Sfog6O/Y2PfLv8fXo
    Dnmw3N3+Mpffv9vzhG0dXnf7twAEeO+v8ndML/angAz+7zDxYOCNDxYuEAwUf8hwDJGRhL8FH/wcIl/udCSu/eEPQCqXdXF/kfCc3
    1PxSBdp//5sIX6DbQ9fDEs6G7tXC8f1r1fv/EyACGbrkaFpM1/qpQtz8N4LEDeEr/fn9JeIBuJQVz7D/qL4AVoyFlK7PGHCcViMdr
    5EJ+NT+fn81fxY/jy/giXuK9vIfPE8yCKBgEnaARBIETWIEISMgbyJ6WE9Sdy+MUr45jac4qdZHQnOT8P4IFArKTsTCNpHHGBJwxN
    6LGmRMyYxKNA3z26szYRGNGaP5eyyGM726FVobcAd7ozBZgUAra4qYx7DGEcXLLXW5abtxyV2srbswMLkCN86XM1zPgOTTgi6tCEx
    zItrbGUWMeb0pPrP8PWcdonvj250hc/nN4M/c3zmjJPOttzZTSStbb2piZRKPfY6SLrGyoP0Y6adHacgxvIF0NV1M43lDfemkYCpJ
    OGIaqaUGH9aMgHYaCuF8ZNk0ZBmwabKg/FAzmBr2Mp9BBwD4vK4OW5OYKwxIwVzMtYBjxobAyV5j46DDgh9xkxssn0yFsVCYz6pAy
    mYcOOhSJwJDCCB1yaEwEBhyKjFG693/bHYrkttOKIso6EdyqrIPxt2PiuTHABaNjiABjEv8vf4sm/F8Mxv3zPly4gJ5BdIQaFkHqy
    Gxfu9SR6ZkvSYcWfjh6OBHtmL9gKS3nLcp8GFpUn1kYqpcOzVvwH7oX0O55ofpDaEHDzJZDC+RF9X3z5HkNoXn1rf1Pba5r/M5a2y
    6tVbf5P0y2mU5WR9d6qvE/dDfS7qfoWo10rUa61lPyU8pajVdPwI3NLYcENKEVglil7CdaDchDhzvQOsEmdo5XhGNcwPF993EWgdn
    SJlozutCEjB4S7SqqLaqlXSCdtMtAT5lGuxzfHxdwH8f7RrtEAJtCE1ACORquq7/0b9WqVatpWrMmAfnqNQ4FthqENjCjMTORxsTV
    meqGjNxR34opOdaM/upaZPHF6rerycrqzdU7qndXH6xWrVnTCmDzi8G3g6Q9uDK4ObgjuDt4MMjRjmtajsrVu4N/DjJrgJvwavg11
    CtrroES/tHm6jWr6A/BAqsg5ZZLrEnUtdQG0QLwdjF45kXIAikEqQzSDEgq9N+Q/wrSHyD9DRKLboX8XkhPQOqnEKaIKWpwXFdPV2
    xNUKXjYEr7UxWlYwegnLc4V86YmysbrsyV1bWlDij7aso0tUZwvDE6DvkbkD6A9AWkf0FSMaVMqTL5mhzXtq5CqxIYto+gsZpmqxK
    rcQIqmKJ79apEAtFEGRwoAEMT+Lt8j/CqNQhQAQSBAgYp0FX0tjW0vPijHTTSJmDYkMpDXWaIs6cfIvgE+Qn4qjx5sQ+p2AHyk8MM
    0vC0cgQjp8CpXoR+ghicj9R4Ob4WORLi19XD1VeK56qnD1ejGqiLFyArSQVMAVMEMuxh0QWJGbwgq9B5JLGDgI6ZI1PJRtXdyIKq5
    ND9pqdN5HbdNhPRPKg2oQexBUyERr3PEGzmMNeTN/Naukjb0HB1tQgrDNUMlaRQG27D1mgsSipENMbKccSaZ/cRsvGBRTsfxaVf37
    TryoBr6qaRlZFpi3+Ae9/BlTh7Q0H9VyP3v/ruwd6nH4Y9FMMeZit7SMvhfLZAmKxiYHETbMICJkWtgQ3kghqG67G2PPm/bwK3WSp
    sdpvZKiK+orLSXFEeKybFDy7a8ejI2/+4aff0gLNxo2phQePie0Zu/PXIGyP4hkjDl3j5q7/O9D5Fd3DDyH7wJ3+G7GiGHGslrfZX
    bIza3uE86WTUGPEsaxTM6KhZ1mnZKqPVb+2xMtYBXAD23dhuJEan41HYFGC+bfpw2xDs6Yw5jU1me5ruDHdZYEuwo2goyHOhYLSiv
    LKs1GbN425Y0qXmeW3EnFdS1Vg5YcmOkf2FwR3NFr06T11VVjJxVfuSQ9RKz8A9pAW8VQbVyBJR9XgXVm5WYaxEwAwiIm7GHXgn3o
    NPYg4P4PIjqIedOZdiabiN4ig5BDndSsISsAZmENXweWJ/gM78g+wZvBK9jLQoIXuQzGkZWS1XVajlmop2Nd6tPqgm6i26ZRvoXF3
    diQR9tpJURNl97kkwSsq1xcW1tS8reXFSpvMy2TNkPFCUQVfLaqR607+kEgg5wMRkPWHyCIFtA8dr0QD2y3kSk2I6mE5mD3Oa4ZgT
    +DnyJjuAVx46RVcdOkcRWl1TvVVVnNgkvlKSSmAcwmT8iLUZf6m6+1+zVc/CXGhq9jPmedVSJKIwOt43T5DABexTqay00OtdA9gom
    9UuFJWjRI52RPdET0fZqImCDe1oJdqMdqA9oIickePYB6gdpebQlWJb19fTh0bZrG69PA2HQ+FgmHAEM5hwfMTj9rp9boazRI0Rbd
    ThtDsJF2BN85Gfc83HeQao2XRQC2NpPnYLkJlF63zk1ECmGEiaFSipoOBmS7l5DHCH3WbKI4DhWHSMaLeVlVaOqTQBA+VYiEy9c/X
    cjkc3PnLHr+a/fPP1rzSkuypX+4pT4XR+VX3F5HKy6zPcdHXt7ldHDn41cvSHn7z0j5HPDv1wXvcBnP7skVWpwBUzRh4FGp0FVcMB
    xmzoATlPdnQ49jhOO1jkkB1kLbodEUOtBV8HgYoa70FB0DO0LkA9BAT+JzLi65ANIAj/VQYX3EjUBKvUgo4w6Dj+BwyfIpsNBqNsq
    kgZNxt3GvcYWaPTfpyE8ZlR5Caqp4tDZ6gIA3VNVGDS6O9DF/DfEwlFq3S1WSJlpjybzW4NVIwnFRQB9PnP4qkBS/U1I6RjrE3DR1
    yRCexPHz+/tXusj0QixFuygXx4X4Hk81M+LIRn3A/P6MNL5Vt4hzZtd3iuKHfIkDlpZvTZbPl8NT+Ff4bnZOl77Fzhe/a5juXCatN
    q86PaxwwPmQ5oDxheV71u/5njffv7jtPSN+w3diuEI6xT5bY6bU6718Gr7VqH1lvunOTcZt8h8Q4nIXaXU+fk9IyTqDiHHeSFt7D6
    AdiGWi3n6Wp61Fg9wJTJOlHl2uHEu50HncR5nCkDxN3Vj4nON4DvkvWI+32Tpd2y0rLZwloGMC9b6NmvC0my1CMxHdIeiUjOE/gbk
    DM9luW8drKSbCY7yIvkbXKK/JkIxOk/ju/+lp/PVOc4um06iJVIBWtouK2ruma46xBHD4qf36HGL6rfVhPU1tWaOENVmEIZczpNxN
    yQw5ucdzmhv9VQvVVUbXrFACKJu7rbgGLU7CUwE6hAqKIcSMXxocqcquM5nvCB0srKMcz+9gun8Tws7bph4e5oxPn2I3s/Sk196pv
    xeP6KORNdWDVyPoIn4AefufmpNV3HXntn55IlPzoycnasWEK9hxkg5bOBnqV42jGkyZ7u06XV9DCsWpeuVTdoJmobg+zbapyfPzZf
    Lu8of7v8dPk/NDwqx7XqzaENxc+Gj4WPF79efCp0KvLb4i+Cn0d0U4T8AXxnfzwuogFypv9kCqcGmPIjjEq0YdsA3n3EKyeS5V6IT
    vtFfX78BF6K8pCa/EHWNgMNyE6FBkDJ/owO6wbwToAX9RSRnUV7ikgRwI+085vh2QfIJ7JGLsd7ygfLSTnovfHPy5YXLcTiLKMK57
    NLBFKoM9TWdY5mZ8CWg+pJDHXXDLUNmdPJnA6qLE76ohojywUDoUA4EAmwnCpiiEY1oFySbNF87DNCLaCNzccadTGXmo/9ei/VNmL
    1qJtScDP8FBnrRl2JhKVS0TlAJ5tCrMCokbKD8FHtU6HonmgoROWQUpZfWnXotifmTDi+qafznpEvty1IBpwu0zp7pGDxAyGXP3H/
    lVLT7sk3dzyylJ267YfLmubet6vk6E2Zm/fVx7yFgqqG0+5a0dQ41huv9Wmuva1pyeanqA6XQFqPAXU1SI9+I8dteoicGvSykZGNu
    ECHrTwoXMyoVRxmdVo9YnV6ltPpQao8spkX8nheEBiW53QC8uux/gR+FPwnLd4t61WYUwscJ6hYnY49AcEdA5pssaxVq40M3s0cZA
    gzgP8hO3CNIl5G3AH66rSRMXIyj3mn4TIZ6qpWKFQNAgTVT0XqadWkkyJYWHFIHO6uNqVNisBsLU6wYK9o1Wg0gkbrBkepqxtbQ6a
    QKVCBy6DAzLGje4dfJmtu2DsSxufuHnkYL+5hbrlwJ3l8uJ3qr/nA7+tV01AA++S6J1lsbvVd59us2sxt9t7J3uXlK0hFYBYzS5oT
    WO5Zq1rv2Up6Xb2eJ5h96j2h0yEjCmGjaDJbrDa7kAeWl6GoMkkBMLmsFHC5PQzvYFUA3d0vSQHLcdAkDsYiA07x7xH5fSAAjvhxP
    B658aQjPfweysf478DHISyHOkIkBALyzVGR7AngAJ1EVkuyuEckojN4HP8Qf65g7EwbqHmxjWJHYe0zoHSgDvZUYWjQ+lTLbBWKEy
    pAF6KNnKKR9d24m3RLt+BbyC0SBxqHKhrQMxCLyNrl7ErzQl+nqtOramsFJ4sP8CzlYI67zMcaZV7g3Rhm1l85srQVqx/ZMue2q1a
    t37CyOOSKJRunrzm0a/v1L2BWNe3Zo7FddwwsP9oTGzOj1JMQA+WHNt/066oinhipV74RaNEL3OlEUVSGN8jHW8E1LfOXFcRWlm0I
    9mh7dD2uHvctkZ5ob9kzjr2upyP9usOu56MnYq9qXtX+Rm/jkQZzeuJSx2x6uyuijxga8Z34Vv0WwzPIMA5V4UbUiKfE2/H3YteUL
    UPL8HVkSXRZbGnZTXhjbG3hxrId7A5VD98j3GK6xbwjb4ftQfZ+4T7T/eZHbE9Fn4s9VzbAHhU+136h+9zweezz0nxer45VoTQeW6
    qqF5DOFWOVTLQrvhGnKqKFRe+tVYOcqbGspBTURZANEVXIFUSu6KjYU3G6gq0IvQAdDPBCAbhMmpRdtu+0M3Zn+XH8p1FCU3fpnEL
    koTPnch4TJSamXjAordJE0hc02VjBGgmoQuAe8d75uDCvYD4qNoOGCrKgsnzUPUrYiuajpAmyb/2jBNVXlPjwrxtHv3WheZs954vG
    KCxC/WxqeKx5NruFo8Wo9sLbHm/7+TNP/mzF/kx62geHXloxez0uWSevXby4p6KkckbzXdevuCU6iey/bc/s217s6562a/kdVy7u2
    vHm+nmr5h56d8WmputuXNtUvjQ58seJeztufmTDnMnpZaCxrsqeYfYBT9hRDOvkspti76t+E3w/xi5l16s2CRvUN+rW6ddbbpS2C7
    daNGphRz4ZJ6hijkDMoWJ8ERbxquN4AXJg+XCsGTQNWBlZnYysjIAng3yUPAYVOPR3Hrbbkd5BJdGFjc8js2iWzIx5AC+SzShfzu/
    JZ+T8jvw9+afz2Xx8HKgYgGGy5kUN0Tjj37EvQzkDM5yTwhoqgm1D3eI5IJUih4qpV+hV4A4LJl1UjHiioahfH5iPvEbqxgpQk7Q+
    8GVNkAXVkRydLoa/OTK12WkUNiYniWNGjQsBycSUQDkKKcK54pbTv8h/bPOOny++6bWnb7zn49ce/wkpM09YP7319tba9uLveyJkD
    Q4fXPTR833bn+ndf/73I+tvXkaO3XLlvN+t27PrVzfOLqRREEQxO5kMRDF2NOEQ46RHrF79ksqdzj3gjMuI18lmrVG2QnBTvtO6x0
    qsL+AIcqBfQnSrxJLnFF9oNJJM4MvCG8vloU6ABjiQCpO1E2jJZHIxT3HtsGVCrjYBKe/IkSqjWo48yE8ch4iizMzY7yM+L/L4PMj
    rxz4PyfsJ83tkh8RD0jC/l+0C8fgYo+CxeZG/E/dggrFgJAJK1lAyvXXyrWSS0kgcGvrTVziZ+4mbtr7yigipJOWW3YLBaNSLGp/a
    3xzgrEaL6DK53G6Pw8sF6KvDSAUt+lMt5UqZKFbKvvwcWIrmwC5fDmxXwH1WpZAfEC3leqMWJk8bpxonilN8TYFW4xxxVl6Lb5lxi
    bjUt1bsYbcaeo1bxa3mbb47/I8YHxEfMj3iO2Y8Jv7Ydcz3pvEN8WfeN3y/Nb4nfmn8TPzM943xn+I33m98hWpjo5v4IfACJCGvz+
    dRGzRutc1jd9sEwrsFqynPbV3nM4qS6PN4giYxz9RpwvQTNsMAeV02ER8ElT6/dy9COcQN4COyThCNjNVmEwS14BnA/5LVRriH7DX
    IpgGS6m/yYd8A+Uo2SLKh2XDWwBielpb3KvzgdEEY73BRk0V9ZGrcIT8HRmy4eqshZ6m2thmKHYmt4AEnHEgcwuLg/55vFTe9Us1X
    wz/FdH17KNoNNivAK2oKghuI7sbgMpyLdJSjAi1hnhn+2zXBcfNHZs1ylo3HH4Xwe+m2GcOfX5WO3/DpV/i1d5ti/iQfiRgdqXvZa
    84/eMdVqkiELQ4UtmM9CQ9/SC1WECH2U/AefCiBxpJNcmoumuvbhu7wbSt7yPVY7IDrQOxz1xexPyZ1Y9GG2Pqyh0sfKtsbfrbsPd
    d7sffiGrZqgPyx37iksopyhSdYTkv5D1Z7eZkcKITM6SsvlUNxyNze8vpwfWSb6338bviDsk8iPBvGEX2pyFg5tyvPZwvb4tZUcWl
    DeGr5HNzinBu7n5hEJFbNwnPDHVWdVT1Ve6oEV8pV2owYkXeFfXFnkuUI47P7msruCD8cfr+Ml6rkquaqBWQB06Hq4Dr4jtRabpVr
    lbvTtzq8KrYhfht3u/t2346ynqo3kh8kvwz/K+xsFYx+tzoQFP1uWyBUFkYMW4gqEv4wE8wfW1jGFAfjFRVqW37cbreR4jjllJ1RH
    KVsX1WhFBNo0dNfU1tOm/11E5VSzgP4tHYP1vhSHuKZxSb8YwtLaIfYUGGW2T0sQZCdZhmWAjV6UzliscRidgD/Qo4UchYLmVWog7
    AZcr0e8iDwslEks4wSbRp3patewL9AATQPO0BHJa48l4B4eQh4B+K1RFsXPf8sYYo+dyvFUCu49tWUQ7uHFAbrzql3SCbqZClhnD3
    nmNrTNL4GBV+bLA/FHT7Mu9xON+G4aBjMTlk07oiW4SRfUoZDvmgZU45LypiYO78Mp1TFZSjiDZYhXylTUQYOMYQT1Zep/lxUAU4u
    7u7uRt1dl8w3osFhzlBzoUBFWemYSiWah3giQGMMgEds1BrkrDdvGnXblBCS6btr4ryeU58M95TNiti9sellZOqTC+7ftXH4pkh7+
    p57r3z5+MLm1V1HfjL75R3jW9zksG/CNVsWHZsVqQx1Myu+HyiMOMLP37j4cSPP19wy/cZ9tvMr3U+sa7pnJquiHvbU7O9URtDVYU
    zkCWpfEidJkkn67zc+5HvC+IT5qPF5s1bwwe7xJuYm6zrbXUyv7THmftcB5gSj1jEGlngnM62MKimIprAbAjvVEeLG+DgaYBqPSg+
    r4h4GD5BTR0yJjIjFAab2yA79bj3RDzBJOZmnJgcQxrhUPHDQhP2mGhMxuWRgQHW15MBGh99BHAp7OKZEFi5QTHiirVs5lfq6uwvc
    rS5QT8MQK577tGboq3OgcqgH9rpCXsnq5nR8xBXVRm0Rzq0uQjorZIJTVYQ1dn0Rtdr4cpvd3dWGLSEF6cSaZ1ZOnewcG5Koa2UOU
    xtOKTeG/YXfP/7Tx7d+sGnt0IO3vbHev3jk7ImRg8d6j+KaH9+7o8DsznNpVctHyt4+um3knVMDI3/d2bUv78i+fx2/8CaeeWKyze
    JOUSsZAitJYxsbeCuM3Kp1a723iz8Ufy2q1opr87aKD1oesr7uft37jig4TOY8r4/hrXir6w4fiQuc340CQd7v1gdC9oDTHzcY9MQ
    Zt9mQ4KluMuOci5Qyy2aVeSD78VGKQ/OUEJXF8TUVEL9IIdwZojESEwrYFWm0K9JoV9BtD0IUKYI0cgqQc1Egtys4b5QGVBaHlRy8
    qe7E1wpRvhW59EUR87h8RqsYyYv6jJ7Z2GWFzGvyz8Zui3P2RfTTOBwkpq2r7LuCIbFmqwiheAywjkBXglyEymaHbR4qAXGcwle8d
    OClkTW/3Tz7M1w68j9n566KjAmsYlZslgojvSM/+dXIJz95Z74HT8R27MT1XsrrBWAPDgPGy3ClXCNXLPHc6Hkk9YzjQOpE6nSFMN
    vZyXXym4XN6h6uh98h7FCrw363NxCM+N2JQEiQKUKEgMHgV7sFnqIyQCF8gBA/5+Y9opvgEPgf3jK0N1GMikR6AEJ+BaaiMAEMtdf
    r/szj8QrqA4LAHaihpyKIF/kmnoG5PpWblbnWFh8oTPiLknDrCtcBCTyaU27GPaO5ohPCEKYCiQqpRIUqokIqMRgJK6QKK8CwQqrw
    rvLTx/BWxbmjZFJoBTLTNnSu7cwwkKttqFo5/RK/AosOxYhi2kFVVg9XUxdYHPoKiX9P4NFy9ESyDZsCVAIgdFeOQwL0dLJMOZ0dU
    8bkFNu3BKSyBDV8ABesjpVzkYjBYL561si7Ynzsp6uWpsbXxtec/zKVSkh2V3hmirUaY9ay0vgiFRn+LFS8eiS+wBOKj9TOjdml5P
    hNIwcidlFewHTd7ItHRn6zvNlqpBQtA0FaR/+mD70krwwoFArIFAMBOV7hDMwzLawU/G4SCDr8bnMg6PS7cSCk9rtNgZDZRAgWHE5
    CMeoUKPKcLL3VGVR3Cj3CaYHJCjglNAsdAtMuDAonBUZg6TBBwbEwkP3nYXovVEZkr8Ic86TOQE/gdIBJBZoDHQFmMHAyQOZ9CEID
    YqLIDZiuru5R4VEOfhMKcmkesV5mGnIotNLjbvD97DSSJ+uGT6RmRh16jb8wlSINJTOiTr1GSqQikUiJtIFZsSTgNDuU+oX7lDrFU
    D7w/POAIQllZDd4HFhCEpaDc8gSciPplR6SnpGOSTocHMB3y2WGhZWzyDU+AhhiAkHbGLfpiqDG7xYDIckvoRSSwan6o8ckEk+IMA
    I6gFeQAfKKnLT9JxWiVmsUxtQoUI2CNM2uwLy2b3WIqODh3DnlIBbY8EwbVR2AD9ydAG6zM/9mLK1RLocOhesq2fsDq89/WjY7YlW
    UwuIVcyRRV3rrgke/vxTfyI/sjIyVVjPLqUKI4AJ5/YUDM/zWvOI1gBXwDLm/AlZS+HX5M6MDG5BgNzj1cWO+sYBN8eYr8BXJVsdK
    vNRxfXK94wH8cPJNxweOz/CXDr3eAeaDS01MMZWOytQkB2NLxRzRFMM5VCm7nUmgfGiNQ1X2tKPCWZGqKW0qXYo2oLWO9c7VqV60z
    bEl9RB6IPUMeiq1pzRT+nP7647B0g/t7ztOlg7Zv3B84Txd+jX6l/0fqchkPMU+MTkXt9pnJ5fZ1zlfc7yaetfxbuoTxycpQ86vk/
    xuVyBY7HfHA0HidwuBUM7TC/jdMbAMDkcQ4TzkcCLsdDhopDA+lcxLOeyppAMsPezd7nI67UQtCAilUrG4kPoeSJQzWRyUpMCeQCZ
    AOfh0gAvskktxKSZ0Cr1olIwm6qOVKKwNtKQvXKdT/UIr1aZ0cgQIqoQNSuAAF42sLx1yQelQKqOft9CoE+Siqwt1KYdb7qSYp6vB
    uUxMOxymtEM0p5HgSNsHsieP2NP2VF46d9yupFYMHlYAU84oK7tcjKLANBhfJkeXdWNm4vA5d6Q5NRJPgV3JMzTOgNDpK3wG9yTng
    J2JNCeHB1NzQrbhv7NrLqzd5C+IRMqlbmbt3Lg3Fjn/W1ZpXui91NF7fjtIXPaT7BeqZ4G3YvglubHXjM07MPhWTRU7CDZ7CY6RIs
    tYyzrLg+QUyRLeEgyagWaaQBBo5g4EGUrXUB6la8hsNmFCguZgntkcBAn9kWyMHcAatRoTt0swqxmFHjrzDJNJElOiLDLiQPb0YRM
    QByrnDitWAiqK+Rd35Sv+OZj/fCzRTzxP55N8Sx6dwhoIpIJ4MIiDisSCLw53BgeyZ8Fzh1uDzvi8H12U2rYuKreXLD8AoP6pcgyc
    o/XQ0NbRs0xzGqcVEvP09Stq665rkeNqs9Ocj2tQ2tyEpprb0VzzSrTMvMH8CH4Gn8BHzG/if2Hznwmm9qYVdSVwVx391ohk9/X7z
    DWEBiE2fQ14NZ8dBaaSPWla7Rst3Epx1JkGzU6r78lGc9psM6eJaIXkTFsA1qdNwzQnc8U/j+SliWxKo4uh6cXvF4CrUBsDTFX+HV
    0c+ncuU4ycG3cyV1COwe9RXgpfuMUdbQLGoow07opx3nGqaRd4xnCRVc5vY+sv/PgS4xxsKLSowSOcDL74OvDFdciNDsklD5j38c9
    onhHZG/F6fiu+g2frBH0cMdY4p3ZU06+iCQSLDH19LDMqZoqX0tdVUyF5ZS/xmqrpl9TEqPariXqKZ9R9po7adLEr8XXOY7v4VrcU
    u+nbW1fUEjXoTEXIjR1FOI+Hmk0FNVGjL8JOAplZsBYhOwvZ5chKQNTTBpYF3LQAzcdUUg/SpLy6NZvEWJQMYQHfOrJh5MuRz0Zu/
    fDFfxy9Ydvd1/e/+M22G8BTXjnyzsibI0vx3bga1/380JSt+0ZeGDncfwcuwLX4mv13UG+ZxvIJxdIX4nXHUDE86r1VFcniNY7V7t
    WejfHO4h96+PWO58PH4791/9bzQZhzxsTieDQdScfGxVPFc2PXxTqLe4q1ryHs8uR7Gj2/cf7WrdoXx2+E37d/EH4fIv4vw5xHDnn
    jgoGq0iD2u/lACBStNRBCXqmwwBuvCTWFSCjEWwvA17YSgRfMyCVC3C67Ol0q15TiUQ8bFWO5OFNMdhcPFp8sZooLsWIgsWIKsWIg
    cdBoUKTNoAANin007CoqHsA39geop60Evf/mabdNp5FvNBf5Rmnkq3gRuTiXviJLm3MWlHrf4Xy7xxGJR/PtENKGPZDFnAVlOOIOl
    V3mfU+ZuV4WfaB+QuPYoE8aByT0I0yVNghB7tC5G3dTcUz8Bw2rxLC20UPCmO3byJXHT3qi08uHT4B9znODfcZ/OfrLnb/9WUl3bc
    XV3qUPTL5tZlkzuWlkTY8f7PNY/2pmBa019m146qRhkkbzeE/LA42W0ThpKVA+jsoJkfvCDoquiIK0rUFs3hJ9NfRqETMl/HQRcfj
    txYvDjBqrI9HIJNSCV5KV4ZvwTWSVf5W0Nrgu0ou3Sg8W7cf7I89HXyjKhq2cdBu+M3xb7OHwXvwkeSp8sOjFovdSfy7KFunNyIZd
    xBwH6pZUFVelFoevS2oKBOLxYKvfbQwEUSTuRuBeGgIhm9/tCYRkUhgJh4ME54FrGT5AJMIX5O9VQgU73S64+818B8/sVF4lIfcBT
    /kA/oFsLI17vR5iNBgwRoJZOXRsyR06NjRVoMDBAGkCY0wCR8RKLFd2Vp6sZCrLBYWjBAUPgsJRQtBmVTjKqgCtCkdZd1XMO4ad6N
    8CN7Gt+1xbV0L5jiyZ46bkKDeNGu2hIRHYqa07mRgGgNMlDm2lB370lZ457QLuVE74Eso78JKUg/JbUYkv5I8UhZJluMQHWXGwsAy
    FwimptAyjiy9fIdjuzkXbil6PKC+xMdiavrx0HMzX0TxFUUP17BExnRKNoJpxTiODmU8kAgGssNr/iRV5epaIS0eZEXhRtXTk/pGK
    MknvEz3RaRUKUypOI/7Te2/teGI/dnT0rrxwhcWjfvnV3bdWLSAbCMYja7/LmjXPrNk0EB256fYWHbkP77tl824L9bDHg2bKKJrpL
    3LVXDyXzPXO9S3Hy8ly73KfkAzUBJoCD6oecO9TPeXmCfb6bNSjDqopD4V4Rwj5iWgUAgNkULaocQLJdkON2QjTNaODiEUDJC67BL
    VCbbVCWLVCbXXQbvMnfJRLDPQO5BN97b49PtZ3nMSRLfuVrKW8YFO4wAaz90sL23IB4bk2SnYfsJm2gk7QpzWWg7lLnBFzkSLtl9V
    I1lZAutj1qaJohiFgweLr9IyF+lz0wER5Mf5v1KC2kuNDFvZxY1Rr8S+Z+SLYw+TwS9Q4PtEeL5/KR0XVtJGXZ4arxpw/d9EQsjqD
    ZcU1eDzFqjv7O34TYDXN+HJvEI6q8dj8aJ5pgPk9NeokRjzqlJvVmolWQMlkjdmerqkRh0/CbxAn6dsAp5rT8zpBo+Y1mhSX5s0Gh
    yWtg+SmToSgLnfTk00oPVDKn0GlUl2RnKpuZVvUT6u5KJcQCrVxXdwSd+W7C+Kxkkou7SpPTeLq+UbtZPdMroVvEVo1LboWV0tqZs
    l13EJ+hXapa6l7edladi23ll+rWae9SXeTa517k2edtCa5hb1T6PXckbwjta3kHv4h7b2Wex0PuR503xf/YfK+1D7hWfWz2mdd+9z
    PeJ71Pp3s5/uF5zUDrsOpn6a+Eb7RXvB+I01dmlyUWlqyTc2Oda/wrfTfUMQu4hcJS9VMo3qaf3K8Mcm2uuckr0oxzXyzMFfLsDzS
    MFqtx5Ys8OT7S/i0Vj36dtmLzOOq3Cm1h9Wacph1mwVei7VCOmYm1H+voYcCr9LfpTdjbrlQ7fEIENp5PG6vzycgDruRxZXntsST+
    e64WQezxHxRdyxdMtadHsh29ru1Gmkgu1LOSwm8pNNqg24Y7XZ5PD61RqM4n24PADxJryAEaXSSSpZwPE97PKkSaJZYzLF4HAwbIl
    qNRhB49bhd3N4SoFmfXFGSO6pWjp6jRanyVElPyc4SpqmkvaSjpFNpnC45WyKUfCb8UX211n3EpT1OJOTC/5K1sq5Zd1LH6J6uGjd
    AlvUH6MuPBH1D7xTPOMThc4qCTAx/ekknjkY09Eu8rYZNr0DpuKwijFYMoCIT/9/vRC7PedFQLcAF/nGrEgTlfqhNMc+g9Wg0lBeP
    g8Pro5mUgszvMGtrcvYbFGIrtgY5HjReiH4WGM2FPNbcC0ZsidGTBOU04Vsgzn0REKrgN1VM8OUlRm6Pg/f1Vnjk+iJdXsM4/LWjY
    mwh1v4uLoEFsTidlnwihseWF2EWk0KvLXqFalokWh667fwJZsGFx9jF37dHI5FIKhj6/jBPtnZ/rzRq0ZsFDkD5ZZuH/eTLjSk7uF
    QRKtWgMFXPgFQX418fViFsTlG67YOQJHWt41pnc4ottN9kXx9dH9tu3xbjnConR1DKylvjUqo5pVKp4EnjVsIGkITDfDwWjkeKU6m
    JWE5dhVv4ub6WeHNqFbeKXxVfVdCZ6sE93G38bfGegp7U7oIn8BNkT+oV76+9p1PSFm4rvzXOYJ64cU4d+6OS24/ixW6UU8w+h9ft
    C0cddnswFs0DPPKCQHkyGItDK+6I2pNxPiXE+VjUofKLGCG/30cVud02kP2XcjBkuxiD0YpsVPRwUBbAJ6dKHGDPK3r8gBSjWDDrK
    6RYKibHmmOdsZ7YzhgfGyAP9icpVzrp54Iu0M3VLse3R0eUFy9JJk1b2WKF+6DMsSFY6lE+TFzGdbn66NdsVdGqGMl9W0JjcNQFSr
    0bJxTbrMqelg3AcThOOY5mDhpk6dJ8roB9f3ZIl774+pt+hqJwGXDjv8fa0f/Ag9EQcxK/73ItvLp65JgnenUhhNtgH0bunJCcmhc
    l9b5k0xXYjTXV3spK4Lni2fOGh0cOXDQWuJaMXVga0kQihYXha0ca8Y+uLfYUOmmsMCU7xGxjDqJSdAUzZfT9s1SjnAvWyJQyVjdf
    HBG0WupHUmgE6cpotKs1m8msMhsdAu2PD1MDWkaJZ6UkK1PGlqV5peSLFGdfUsMtxWXIx+YXpsp1shom1cleL81N0KUbyL4j++ggn
    Y7d7MAOBepQRjjEiI+vLmRREuIw0Blt4MNTT+et5DAl5zuJt3ASGkqENTj4USLxivjOW/Sw0C2v1Hp6y4h5RiU2S/50T80+9VENY0
    6YN6FNZbej7drtFZzXbKsSa3pqWLVnmmoa1yA1BKdVyTXbvILGwEsoOAU3aqZop1Q0jqmrmnLFHO0S7Rb1bZrbtMaZtlttxF/TXkM
    6hDJUXl2cX1R+AtS8Dumyg0fVaV1cm9YpsWZVhQg6lFBF2qFjJKVYq2N11Q4aeudr002OdsdKB5N0bHYQx/dBTOgTp6rlagKP3Uk/
    FCyqALwNMBNlE6stHizCRR0RVKbX6crLAfEXgALcrLIT9O/pwFOEFQ1pFPFHeiI7I6wcORshPREcEemgyAlSh3hkBXPgT1sH8BLZ5
    06mS3jZkJbA6+7hGZHHZ3lMPzOpG193Qy4a7uruTtCvdhLicILGV+D/jCp58es2kLJzw2faxKGumqFu+trRlKZjEolkTnb6GB0Gyc
    l9OjL61cikinGekMoyZmzlWMKpBY1AuEBQChKuQpuGyNhr8SCzxejXe3AwNE6V9qCxQrmEK8q1Zo/owYYgZFVctQcpPjp1mCGDf4m
    CAvpyESQTJBR3QTRW19JXY6bqvy2BukFaD5fAkwJHnu4TleKoIT1GgmfPSapE/yBOq007JG3aDslDud2lTWuAlGPitNRAqYFSDaX6
    0mnIxV8rPGfk4pdlYyorx+Tcas5qz7v0tRk9pLYqbwToOwJrzkmHe3JfIZFJd4Urr2i/yZf/5ldzZtREoiQZjSQzuzdcOc5j1tiNo
    s5a3bm4pAo/UNhUP3vstNuuNzlvWVZXUr9udnjb4mCwsKq4tLxo9s58/4TElpHXbx2Xx+urx95ffy9uq3YWdqQnt4PkZ89nzzDHVH
    cjGwrjX+Yk/5BPRSVYpLKsytMhh3Kk5QAG/lTR0jrKZhSkVKic6+h4PR2v0znsiCVqC3U6TXmyGoblWZE7otYGWiGCo+cnNR8lct9
    5KXL6UWJQfA2EFvzPUT8LTAhiYAq4j95D7/WpVNEIom82uVkOQrmXbuefh2kbKn96noJ0umjEpCgEEPxBWntrdL23cn9Z4ZbXi1H8
    JHeUO8J/4WdV0Tp9W6UUXcOsZW9ntrJPMfsFfhKPq4S8mL7W4surd9h1iHXbkBjAl3ZS4lftVJEOVY/qoIpRfamzIeQI63Sivlnfq
    d+pZ3sgy+gZpBf1kj4F1UH9ST2vB+l/vrpC3xF5uXH0rSx9qyHSSFEcbuvOnSx115jsaeWLdkU04k6J0fJRifFJ2KVxeJDTodV5BG
    j52YCEnVq3B3k5tzT6OZVyAKEcUHRRHger1NqKL35NrfBW7pghFikzmWzfhnocHrfl4bt++aPt+5v3zjZKDk+BAVuKyq5Pf++xxxZ
    WVMTJ18f+8otzP+ypqmKOPDrZJYY6h+PDH5aW/ezFzI/deeCjTAQemgrWI4D/3iew+KL9IK7vvBJVbABnixjVfEegE4Jz+ofslJ8C
    XtD4hy15ZBZU3jhKLYq3hAEVD+o70VbzypDCKG/R75UOmZU3sqsKispRiFLPrp+jIh7LTHaGagY3k29xt3j4Jaq1qh7UEzjsflU6K
    Z1Gn6jUY/AkPNsxy9Me6nB0eNY6uj295rstO007HU/hJ8nBUD9+Cf+U/6nzc+GM5wvpHHZwZKp5jnm7f7vUEzob4k0SfiF7GkmQ/K
    AwkBdRBZwCvugI9AQICogBSXmB1RnYedlbgLMBfWCx95QRG39qi6h5Lz1KzUvTQh5rTsNDagM/9+twk26HjuiSovK+qAN1op0ogwb
    RaaSmAIKeXeW61UWaXXi3C7sGsE42n+Uw4kQu9ydOKq4uWHeM/CB3YkHf8rd1dw13tZ3pUtgqkagZGupSVPcZ86iIaWZ4F3hXeZl7
    vZh+tw+yMXbsWDxW+RAPd6NuxY8+jEQHjfzOHrWkVaJIjxwGQVeCZhw8JKZHjzOBxbowB+xFKspRWenFTytH//BEUWSg25ipkfduf
    fQzjA9v/a+SwnE+kzYUGr/wiqse3zb/yjHl+Joj/425U+9hw47p0WTUutbvmzr/8SfP1xWvh6evz55hVaCh/KiINI7yVjSpvLnM5x
    wKUwk5BlOYDUlem6KwbFqJqiUT5SdJRxlNUkYD9J+ywpKSg94heY4zv0deaqih5fWbqeoSLbLaQGZZ8lAECFdYyCgeB9VcSUh41MP
    4CPyLQYU5wce4qL6uNsNdSNIyDL3V0+nFsrfDS7x+LUyjtSk6zMZShQU7zKOlxBqNkBPaI0nJ4nxljPJw3CyOSxYrWu2tRE65JQbf
    SiSouviore2tGvqlDig4kI1jKAlB+qRJ5UkqIhMSxeUdyY3sRlUv25M8mBxM8nKyJ0lQ0lZgTcxSzRJmJu7n+ck8lpJjNJM0szUPs
    k8X7Enyg8mzCSJJSAocB27XghVsqJaapGulxZoV0gZpN9otPcsf418r0EYFS0xXa/ZZ6q3emK3W4/PW++E2LVtoVbDmL8SFhX5G60
    fagE6iDobZ2mHrsR20MX7bThuxfZnfzNGDhXhxOS2fn1TB1RXXbR49eJs+NNzdVj1cTX/0bWc3PDKoR1HRj0j8Vk26oglWiEWiQr6
    EEixkcT4i4QJVoXTxixX6xcRYyuH0aJYepoF9BuucM8RmMMQV32rGnDm2q0IVpmJyiYfJT+t6pt5/+p//vb4JNKQrocemImPA5i7S
    jpwt5qoXJFsavpdZ8b0lE684/+qreNL0Zx5TFOX5jx6f5DGFul7H79V3ppuW/uyN3wBHTwN9OYPJoDzkZTaNcnRcsIG909EPupBBK
    QyKwjRYUzLC9FUyQUik/y1idlDRlbQim+ibK4S07oiJp99GEHp0epjezSvaFcbx7ED2XeUOqLzxPJUGtkSrVRQD9aCVL3qhbGtT2B
    rMcfKtwW+Nsdfag/aAOmIuvs1WNpFbMfdNR5iysMhLfIZnEN/B08/+Wf4e9kdsH8vQpXh4NCqJUcrOeXl+HzwnrcLTAtvTp4UCoiY
    AGQx+33dNeOKtk9SKt73S1pYozX19DGyvHFaZ2x1tzg7Ukfcuo3JKHnDTPGmb7En7lQ/o6qaWC35qIvwKi8XLFfCMguJyN+dUt1iu
    tbXb5zq+5+Ixo+Z4taBTWadw28id3FZdr7jF+wTZ7zhieYe8b/xAPEf+xljMHXyH0AlPt039Ev8z41keLB2vv40waionHMjJ1Er1R
    DJJ3eSfSWaq55Nuss2yzfmQ5Un1k5oB4Yg6o/kp+SM5rTunyRNO8hjxJ3nSRUuKO3rAneE5fhObh1I2K92qxZw2t1s3W3dbT1lZq9
    X9K/otYPYkGBCWuqgWWrwnTzanKY6vcWNKEf7ngi3uThtteKVts22HjbGdy8vroR9l7BRIStghnBIYUZAFeBIhI5wWOOFZg5VF2yh
    fMYWyOWWgX7YyyCAaJANz1oANdCdqwKWhzlc36rlACDB9uIu6LV30L1qGwM9XPobupiyV6DYBicDXXmkFXztB/6T4HITJ3coftqKx
    Y1FXG65rOcwhTEhXqxIcKEfV3Ur8zMNq2lBaJxel9ZAEanHiNHimBdURfe5cy53rG21pci1NrqVWWrJBnbaKzrRTMqX1kvK6Uvlz7
    Mtc9NZWC2cf/WotZ8HM1IJFAsqhUJD7AC9cuHXuliK/9Y0H9375l6MPvza8Fe9Tic4FlTNuJeN+vnr1gnV5236H8ftfYv7NZ6tawm
    Plm8EfakKI2aC6EyWIMCrdkSLFXhXJ1OwUKXG1O4FFA4cFQz4WlLdbZsD1F7KZCqjBrIh+7jUXR82TGmySRghHfHaEjPnGAezuM3P
    0O++hQXGw5q0hcShnlAapO/2K+Bq9XlG+khkV5GPIqNyD4FbZm8+FYSYhHyuCiDkqgVjxq5VtvCdrFWlU4ND+QPGvDYaiwosm6COa
    wfJvvZV7I+qWx2+XHrI+FGXqmXrdZOcWZotO9TCLk0WbA/S/ktot7FbvEneZMkVqkQM91V7QniAewXDYJ9wTxId9/AAjyP6Qb7fvR
    R/xmcIRO040Q/CbKsg3mziB14jA4AP46v4dEPAOkK/7cEFiAIuyPp6PzUaTeI/RiMOUWfs7OsqVsqoqV9bU5MpwiVLKNk+gfKcBUx
    ZvN3QaBg0nDZzBWXic4Rh+9G8eckw5fQhY93+19+3hcRR3glXd8+jpefX0vN89mvdL89ZoJNnTsvWw9bBkbNmSjbDAJuEZyyaAcQA
    rJJA4YbHyIMTLHfLtfcnewbdr4TUgyDo4rDYJlzj4281yX+6OkLv1srBnJz7Om0sAyVe/6hlZZrP58u/dpylVV011dXX19K9+71+J
    SrZdpHhn8sJBqkPq6lo62FVfIpJtrmE1FKNxmyMWtceijoQPxW0RH/6Y3YYwSavUO+DxFa6UiAjYCHMAOkQZJiL52Ut2/G1fdP22p
    beSiQ3uU6fGXzhw+3hHOeAsDQSDsVbZd5EdWvr2TEsmEkn03MLs2tR19Lv39mTbA5XQ3VZr4ZNvbtgEntzrlvvY/0p48k60GU2wT8
    mPiI7Rp2LH21iUFXYz96Xu28aglKZVc8OXJVW9OrJ7f/Xe2PRuiBf6nPPzrmOVL63/XO+xwcdGnnQ+6To+sqB6WX3aedr1evn1wbO
    7z+/+xe7Lu70eyV4SKra24G71n3IDbXUvcrBtoQEvcm+8tleszmq16biZKBajoB8SCR2KwuuwGepQynpRX5+Lnoy+GmWjC/iZF8bT
    M0TYIl1lI/QV50InQ6+G2FDjGlqSS0Kkr+yaHcADEBs7IJOmgQwsnYFRG7YtYE627ufwEY5ULGQYrqI5vhFvXGALssE9wOfceNQ94
    2bcZ5i/QRqyuIZRFznFa7TurXhrJmMe/i6bJ/QuQI41NMzm5aCQx/vzx/JzeTbvAvqaN8CSyFdqrezMdrwdns1IViup/KfTgo1Wfk
    51MdsVpxCykLZHgwmcoDDo9JSPJfBIYjpxNnE+oUqYoGeiqf0klV/KIiCMxL3S7vxuefcJ8purd8OlPr2hvNt07Bt9uI9qcfoKkgO
    bHdOONwiyX7j6vmyhNiwDMAYOOkfHAnNGth6v43ohz46yzCiLwQmCYeGndPvLtCSjsnB7YJOh8hI8I3v7rt2v4ENEruOfPwqafsUd
    7+Clg0u0cil98IKQPkBdWg6kFUfyA8IFwrsRgVa41CAKS+8AiagLEDQEfpQHBehPOhMqcfqN0NshhtCJg1cuQbADtETfjpKWg01db
    UNVS1W2TZ3R4cGdHb2Ris/vdGF1LFoslArlAqvpjo3EWqOp2I7odh/2dQZ8aLAyLKENuC6hdeq6D41mh33ohvR2Cfe4+nx4LL7Th3
    fs9Hd4SXdvJxoqDEh4cKDSJjMbJbBTqrp8eEtuqw9tS26VUK9zo0+JMKMqpmuH63fySNHQM1j8EHyGD1DSJvOtAoHRiiCCruny8yK
    VnyaagWlOGnoIcromHG7IUFQN5KSpIcHHqSqJJHoVXgmJouFqmtXfyPfK9l3nTnxu6rW0idWoWXP6/vbFb/X0Z4KhvG/6J+sm99/x
    bz783qODektFu6ecrmH7wL6e8ujQLb2l5d/k8h37zpx+rlT+4/+OtyS/NvHFRVmt0Tk9vFqzaXrmRVusZrNIWhWr1hmnbziw96s7i
    20uV3SDbm+wEAzfxHzhvsPP7Nxw8PDcrg0ffbY0Hs1H1h/ZVHY4VIToIyNBTv+bSHNtzLEGbfS3y7BwBd7CU0LIuyLw3UXNsC7Q8s
    CacIE+jkp4LhMAqSsG1DIIDbFQuRLP4pDKYGDGQnSMUNYFY2TBsACtpPJrqrLKNtcYqVyUzZQo0/GymEhh3TwhtSLJUZITJMdRGYy
    nFarHqrShuMWfUYEWK5cDWZBQ3YsXCVA25EHKtAqL3y8Ki2ml5RwREBdXyYbjZRGWZIUeyR3jZTIoDGmJ85T88pTk8pQs8w1NF21q
    6L5c7VUcos0h2hyizSHyNJcptiGV90/DCVL56CU4l822VxtUmxLtRv0cMF3kKRTtGKwrDFryXLucqvDtU4RvNkfNsZn22XbVfPvZ9
    vPtbFqDR9un2qehSW7HEudKBiwLrFm2tGSTgfhAC58MCAPhUDIQW2BNcmu4Em/tLgcqPViKtyH6lIStslgE3u2K6GZ5PM9jMz/Nz/
    Fv8CoekFQ0i0KR1mB2NDuVnc6qZrKzWWY+i8Ex/Gz2fFaVnap++wgNtwLl2RLlQKFsmhsv1bsstVpjR4gGcbZ5fGpOE/XGfGq3D2s
    5j9YP5LmhKaOKYQxWSyDRbUoEcMNfVqHV1FNCiSuhoiFpbfhsNyRGPLz/ke4t016ric/Ly+vtcpFngz35wh0D9lrfcse6sM1lDnrs
    ORMW1U8s3XK4d8eN8rPLf7lTcvkikXhM2IJ7vnFTrjyy7LupNRiJWPn2Hew6RXoEy0wXOWjJetGjFqZhmXkZRQgh8NMIBSMFd2OIa
    jJC1NEnZHWxOkJBKC7XgXsjNZqBFNgwo/3kReitM7qaGJ9U/sfpxnL7RXO5vfkCXW0SqEOcI6H9oSOEDLfsJ2t4SoM1lJOlUjsMoG
    nRWAk3+CZB6ucmhbcmGxoSxRJzjiwJgjPTsO3DykowSnQNhOgRxjk9ONiodHcrFdldrWrGZFB1ndAwcFOEpFCL1gqP92vZB1fqdJG
    wka4HIwNgb6TrAZ5MWQ8uWPh0/ZCWl5QlFAmvWgOKjEnm/ta5+jnFWNFYCu7ZCJ6KTEdmIycilyNqKTIaYWQ4RIBgFotlWrZ3KGU2
    r5ThKC3lVrenTBaIdaDFmAyIZFnE3d1SINRjcBuss+RRagi1GLRWkZ/VYV0NaPCpjRUoZHO9wt5pMBjdxohLTtdc1G7U1lGedeFRF
    55yTbtmXSdcl11q16nwqX9PlwPdaAfWACG9lxQ2lVBeiEpY2R5FIVEE1BW18OqA1RW4bmtb2TKFwHUy1dmZSnV1PuwudC9v3Njq1W
    kDHl/ChG3qJ+BEVyrVuRxaknbUCCB7usbwzU9mJLc5Mk0gZB2BWjOBWjv+ShNmneSVUZi1GTRY25B5aHQA1gCKxgZAXQ37wj9RrG1
    ogqUBgJeaFwhX9QK1OKjPEPTMQSwsshIA1VtXbA1aeJnp4opIpLznRZCKVmHiuJVCno0q4MDUgJC2IQ0pchDVycGkFEAyKISDVhRA
    MhicjuuQaZ3q4QB2Xpp1nnVedrJOKoD0laGUO2qdZew8ZdzXNurEsnPUOeWcds46T5COWkMyoB1owcmAJh5uGh/IlLQaHuGI0dAYR
    jEhVjrLswY8asBThmnDrOGE4bJBbTjlWAUKCkqsd117+YQNoTIJfffXv+/m6/6Mu9y/XK+3ekxBlydhwRb1Ex9272j303fLyk/3Kx
    gJIwtCmjyRLHayf9ug4M4JSsEnqFzrtNBXaxkbyjdpbR5eKLy+PDXrwzvOp2mvdKHa1+zV1+wFLXIIevV193fTft0UULopoHQP2eB
    uQ83rhpq0fag5AKl8ILuh7xAPwwyl6eVpenm6Su3W0FAV4LIq2Jup51fVBwNXKWMBXasMPU/jXaoWOoaFjmEBI6EyhpRv6JRfU8aQ
    UlTfTGRmWQ9dJaZx/iMCo6CDdrhzxd5NgFSl/u1jMvTJjeGRsf1jR8bYsR2a/oIrmtFruzJqxVqWA1ZjcpJg0aWz8GnyGgB0/7LaA
    HXgUReFNC2/TzHviiJA7iLDk9H1WrV2+9gOravQb6EQb5GoUlpKU8YiTdvS1W76rZt+6x4iz/FPLylq6vEqsGbQXFV4NFp5n56tVs
    eHgAJB41BzBZHKb+jZoaGJ8cbCsawcBTJzmskjIPrM5+p1kCEI9M4bB7ePv4r6rr6LeknOkZy/+u4LHpfbRRgi5TPhlX1l7fmJXzn
    YGQLiE8DBpI14doIwKlIy4FpgPjrdUk0GCqQi61uGkoH+gRZLMuAkvMrpcDoZyC+wxtPh7mSgj1Tk9eGx+HD39sBYD5esDsu1ZIJD
    2mj/jp3wYqIZA6/XalRqbX9fIe9y8hNOp0ewREJ5CU9L87C9D67I5mqyNR1pz1fxdHW+ylShzTG8szsyNBQcHh1mZoZnhxk0LAwzw
    2Rdv2hzlIenxicWmF1/ESJczgLe9yj1Z16xE14BXueCUnRt6b21B9ys4FOnf8OwQ8qKdwta4YKafFBLxGA2RsOxiCHkwyZziym6mg
    8ibFAaU0UF4XgoG/Q7mKFqW9NvlHBDWuc1PLLSrF3FJV1HTUp4dJ+Yva2040H7J58Y3Hwg5DDybeuWu6ydISev8sZ3VO4cYhh7R99
    yYaimV4cyI22VbVl3YXC5s170UMoTN2Nbmrm4zxxL7dtzaHBwrOPB5ft2SA7CNDmFsGUUf2m6Va5s0qeXByknFYlYbiBtBdmfqS7b
    d7V5IxFv5xi+6alMqEGlDEQW+T8Ek5WYFUxWoZgsTwWNguJszpkdYUAJrfAt7I8kOYqSGpFtFB9wDiqyNDxHDR93ZVLcYhwg1cegu
    wP56cV+OpCfDuFPUoklSYWRJCweauCCxQNdk00klwTcxsMVSeRjInlAJLqCDKarQtEIG0QIJLcoMoysi5gjRa0no1jeczkqsAjU/n
    6d1JI+uwp/CIBABEVwuYY2bso5qMaD6hQKtE4nUFDGN0c4Sj05iik4ijU4BzVpOWiTg4Mmh6NSRn7a008b/PSknz4otXo10UUSkAn
    0SCYr5T9UgCFsW0eFSDBcBdZ/vjJamapMV2Yr6qwKy7Q+Q77NVzTzlfMVZr6Cp0jD2Qrr5xzJgFkRZpLJQGSghUsGTANhfzIQVoSZ
    QjzVnQ8UenwoXCzRJ46Ew2aziXc6ItpZDs9z2MxNc3PcG5yKA2HGmyz5I6lgcjQ5lZxOqmaSs8n5JIuSQpKhYUU6suCTU2VFoEn/4
    QKN6HKzGlXUzTp9WK1xqT3NZawE0k9SdzQqz/yr0gwEzK9qvMYElPDgv/vq4F2Sw6QvbFjutMolXtU9fP99ehMsRFtfgUgyjXV46b
    XBHV0PLj+wM+imcox5BN//0IFHlv2TDj9Zaf378PZvbfLAOmMI0r7AvkzWmRn5GUNjpfkIG6g4jFB2jtq6DAI4mBk8Klg7cBIqshU
    aVbSbyhnl9EIUKZRRcQtQRIxrBisdnId+HrjYCzDlUdkoxNkMAuXgBMq+qSgfAFWVKmAwKIYnSooAuAgtQk3Vdq84Y8d/6njR8df4
    dd2i/2c6jfiPPN6k63XstD+KH9cdNf/Mqw3KxYqKGpzmgvj79tc9jBzEm7nmbES6rUNa1NdHCCiq8Hk4jqqmVNOqWdW8SqO6CFvO1
    GXDnIExrNhawNcKhN304Hxi2+D86NZdzxsCm58PqjbfsGv8DHiXwb/GgH+hASRw4/hfIg9bRCpkY4vvCe95V30l1GHiWvRSG/aLUV
    OMifpifFQTs5htEvJjj4QdOlJzaUnNahQk7GXJwa53SsitJgfF5L/yod5VBNYI1OGN47LlXuZezWH+sOmweMhxr+teHzc50dh8S+c
    TLDUvyXZQfukV5ReIIY0tHpTNmNqcoAG3iQ0lFoPOP3znfW8ceePwJx/68bbKnRvmHrn54dv72ZPPfOHkZz6a+daX/+zh397fXX/m
    wR8u//zEX115fAr8mX67PMC+QmAtjmpMSwPWkp3Uh7HIp6AAFQtomaxuJLFJK8XBVom6MEqgL2ryaxTvSiueTRKbSIsqk8bzirIJj
    6wn7Edr1NQ2odHGKRZGFAsjTKCTYFjCuV2iCPc6V6ezwvcJYs1d5zHwMipe/egFAMQiDzBJzf4839lBZkfh1kpxpFVSaIAGJvVL2U
    uZNYn0SmhMcYTdJjIZPcwGJkD9ngQFM+IVi+r5hkk1DVD9MN8J0FoTNgu7haMW1WMZ3Jmpdw5mdmfusNyRuYd7wPJA5vPct7Tvcb/
    VGfOd46WJ8l1lldyJcxybSIpWwla5H2uxEuYqHkbx0Eg8gHoYMZ1gVa1CG4aZMFqYk9tlKhaC/CzPTPEz/Eme5f+nxFjBH8ArSaPg
    CjQTwuBCo7jNqENTHeAkRYUZCLJv+EcBOgSp1rki1bIm2MOkS9m8IlfRGrloOWaI5aMVbVHCOSM5lHRtEi7oW6WPbV5BdbMEBNloy
    b6ylSGFw3iTgSk5Vul51ArCBNfcBqPDYE+s/9jIl2488MXpZwfaEkVnbXBZclfjVrsQDriiuKwz3b1t3/qtN8rj+VyErR1884Gb7/
    r8Ty89fcRuzi6/d1MpEI1ih76wj71lIu8yHVl+dn+4Y3zLJ17+mwNbXCJSdKXMSwSWE/iFppdAikKyJui0xCkLEXcFcUPgWi2fBJv
    cR7DJNwQBZqhtIEjFpyBlNIJULqEdscC6HO7vEOB2oRgBZ9NIfH/8SJyNJ7QuA0tA6hzIIZeIFPIveAfQ7wjXKzrDMFyMXLtfd0TH
    6MgALg2ZKQVnC5UzYI4fUHAOgtwGiBkq1NIYDKaS10g+GZ9aGidXKL1X3k+YbHORKZplRjY/otLKKbwnhYMAi5Srfywcj0vdsUC8B
    /H6lMUmCVjlgi1Ua4IBGyZYFmkJ375Hg2UN1rQGUziFLJFgMCjhGWlWYpAkED7+rHReUktTyW+v+L4qnPjBCwcONoIID16atDT8yd
    EqZctBQoUJerO3NT2imryxc0WFWF0tfA/d80B1UzkS3mkX7dm81bhh/XK6r8XNq41hTzDOYzt78ic/2ZiJt/Xakjctbx6KExIbcVC
    ud++JdT4gswRe9l29wPwdgZeCqtyAl3iJwktJBhrKYKolxFRLiM1eDxc3QHs8ZAa1H5wzA7orwnlzQcvFzSGVmFbjB9T4LjVWR3MY
    45TWfX8A7w3gQFTy4CnPtIfxiHpUX5ycJJQqR0pSTIJTEoAIoc7nfnpO+KmC71agoxgyxzlVyhEQW9VMqqBVhnGLg2p8p/ozakYdT
    Wl7Anhf4NMBJhAV9Rhm+L7sAWgxm0tFD2eivGZchCIeLxUbeG1RKRfBY2QSsrC4OFkXFqm/ccMHNKnLuDOMKLbK+lomoa+5bBOGXb
    Gnha9H1LyWT/DJqdJ0aaakMZcWsCR/gaDIHxl/ZFqMLEb/c/jNyM8y76jeCb8TeS+jF+uZycynsg9ljuFjzDF2xg67Oc74jmaPtRr
    N2MzwrM6g8fGZH7a8HuZ8rMMm+hx+d9KbOa47zj8tfS38tYheTBsTmYHMSGlP6VDyUOYx038Inyy9y77jMyS5QgCdYQI4iHN0e7L0
    KXSmdQF7ZEvKFXCf8QY8QQ8WPBL55eCk+4wDTraIYiRs1KvMcVqoA/gHqDWXKiAEP6rnYbfbBa6LNkcOfljmxyLGIhjhfgU2VtYm6
    6dhL9Np86yZNS/gNtkd97hbgxzmMnNxPEUDLViIumDir2AJFbH0/GBzcQxfOniFsrBL4P9xNYQnJ2o5Qv1PXcWkSjc5v0K3EATm9o
    JwqSGrOmuEd+AJNx0x6m1Gox62S4NQjAkXEi5euTR5kO5RpNRptRGH0SrpjGWUnlAidxPJoCRYNNqghYi3miTnQ7DxG9Im1D6soH5
    lqymI0/tQ+2vh15YPE6rJCSL4HgDXcNk9h+eYOXZO/8fGWfusZ9Y76zve8lR4LmsgTEwarHhgnZT1uXAu8uXM05GnM+pJ+B8HsiUh
    uWu6hLuGZb7GkOxVXFE8VIPN11pJU4ZmXc0gBMS6SYIDhG96a7Rw1yKKQ09YKQwQkG+tZRpxd6dEZSyzSG4hkluItYwkwjWXZbOZd
    DPXWMFI7mOEAS7LopHcx0j6kOyy0Pxx5/TrP1jxVp/AlvDKRovOlU0yYRchS6npLhyJN13XQZpgZkOx+2/s2yEF93z1R2fu3X5XyO
    40hkK+Z27p3Xnz8s+z2ac/0zZcsgiigT25/MOv3TGQbU8kW/v3/slDxwO8B/c//sTWWu9Nsx21nQe+6TSbXPDvZ67+L6ZL9T3kxUt
    N3xm/LBIc5qceNHoDFZMNditWW2nVSgmZtWkntALloywd/BZUgrfquYzZYVOB0wzCGkLJls6fy11abNCwt5r+59fwk9upWM7p0b6q
    Tt7Hu1Q69TQrbtAEUiXytB7rzV5sv92GN9swvZ1MQJHcW+/FasrCqanIq6ZUUG1VhHwNnSmlf6TyAdWQWa1+3yqRl3rA1ZfOT06eF
    c4Ji5NNbT55rd6XkZFMoNtQ24P3MEzdf9xy3P2q/VXHgvtdt3bOj4968IhhxLjHsMf4zy4iL9pdcRfrsLvcHhbDweY9gVl7vjFbNs
    8wWGOowKQdb9jftv/KztpvtXl/jPQL+KKckQjxbM355/2MH2GsUqkjtlErnrFiZBWs89az1vPWX1g11infc0ebDNySEhwySbcPhx0
    RUX3pgrKhLzl1ARPyiUgWCW6m5nLCmR2k1riSPWyhu7FWS9RTMwZeM21058OBN98sJULrLfHwTE/reOor1XuyzqTqe8t/27f05xPr
    k4lb9pb27GVuCzlu3xS7lf7vIiKBLrFfR1Em34AqR5xqeriGIUIvJRp62wY/JAUacsAF2UrZfw/t6BGpjlhsgpvYlBhI5Qo1mImRp
    oBgckU1esnk0vgzJr0WfNJeAAGB41HurTT4TRGmoS5cutiwlSkqXPApXsVH7dQqznosx+slvcsUiTrJqMqQesxRSwWvWCqo7ULyUL
    uFh7JYHp5KvyLHxSQKeZJG0d3GRLC1QBexaR+DCoU9UYzHVmtnyUGgWiE4nAVArBMgpIwY4QepJ2YFx0HdIsWBPszHVWV9NdghbQp
    uktQezjoC8kFoJBCNh7k47tYGuB5JH/VzC7hXtvIoGiUkCZ7HxOt5vT5EHYVNaB5jM57Gc/gNrMLUOCy6PRFRHLXOWpkZcpi3sgB0
    UgPsCNDFXjtyPZ8GG9U3/ueHstEa3WwFZr7CqRHSIXh9ZovP7PEhweIV/D5E1Sl0s/PJdNNcongEN+GQ8G3aSqgBneRbvMLuNYccw
    bhp+ZfZ+x7sHT6Q8VU34e6Jevruwdou9utLfzdH/YBfm9kw8fgMPt5d9OLo0tMzo21DjHZLlYmCNnK5j71CYLS4IrfadLp0ikWH4j
    juFzU2yr3ZiKj5ooVWIbD7RYZWGagWabVIqs8jDd0EPn2RpHru3CQVQa/pSAK6NPLbLMzhIi4iUYM04cNwD7PNVkKoXGooQogYO7l
    I3vZbk+ep4EhW6LwwuH38DPJe/Q1yX72MPESY54WG+v05HXi4mNJPJhlrudWxr+1z6kc1jE6nFjk359GlbZ6YLiJGPLF0O24TK95+
    8Tbdbfzt7k949npvyxziHuAfcN/v+bT3UOYof9T9TfRN3VOeb6S/g86X/0ET1um4dDqTSvGYIyyR1W0LWFGmGEAibwmIMU5yezz5F
    G8jHTLpdETH2cgvRy5JeXQqnsuQ0s3rOC5sFQm/gzQ0fNREZhvPhWt+c9np9LjBZ8x7jMdv85dBUJ3mf0UE1YfquhHdHh2re4iAq0
    n2p980S9gszRHp49ieDM5l6hkm4y6V/yOo7EFdP3lw+MLkgQtLVybB63WpoaYfXrqQVsCvyfLAxk408LS5Q4RlJfD0dwU9Q8izYsa
    DuB4CldZmYKjVSiVSGiqqoWHNmlXxZQCfVaxENBvwc/ZsNvT2OYuWa0njVDTh0rmXv9x2cmvnUDUfqiX4QH+ke/klc8gtOEvs16Nx
    f7x3uYg/SCZEnd4YjapcIVP9o089+sWeTKrkMK+fmGP+ItgaNggGhFDn70wPoe9CwkbcgT9BGKx25ln2q6rPqnn1eUia/6L9t9p/W
    J10Sf47+kOGgtHTSM9BMrWZ9wmftZhFg2iw3mi90aaFZH/f/r4zen1yt3h6vPf4/lvgx5KpZVf4/egwpFhn4kRqe/pLmcuZy61c/o
    7Ck8V/VFK5by2tpbW0ltbSWlpLa2ktraW1tJbW0lpaS2tpLa2ltbSW1tJaWktraS39v58QRNZiBB8bbGmEEPYgcA1BKNI3uonN9fT
    eMLbzRnNm646hgX5/vDQ4EotWtm3usCSKXVV9vmB3OF2GccFqE31e9P/VR4U+T48q+H0uF69eJUcMR/JdRY4R1IdG0Sbyq+VQD+pF
    N6AxtBPdiMwog7aiHWgIDaB+5EdxVEKDaATFUBRV0Da0GXUgC0qgIupCVaRHeVRAduRATuRCBjSOBGQl70JEPqT8oJjUGdhpCmnI2
    Gj77Xffeo+05db7pRv2333zp5QeCM8iNeL+wCf7WL/L6PLV6xoUeECaGvY1M9z+9+Zn0XaSW1cyQp8i5TZSfoWpIZb8YAMkXyY5Q/
    I2kiWSb1mVHyR5K+k7/69l9Q+QoN6BWkgeIPWw6u9RanUm9ys1M/me1PpJ3x9cfYf03aS6B7VAJteGIZPz65tZ+0fIC5n0s/6+zP4
    R2qxCVz8iZR+Zaw8ph8i9Rkh9HclGMseuVXmdpoYspN1Aci+57gPIpL+R9aN95LxNheh7hWRQ1t7v+cA7UVsuPj9/8pU95q5/5tzK
    S/yTv/e/BuUPXys99eGnlx4XEGciX3XNd/h/AUA4hrEKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PC9UeXBlL01ldGFkYXRhC
    i9TdWJ0eXBlL1hNTC9MZW5ndGggMTYyOD4+c3RyZWFtCjw/eHBhY2tldCBiZWdpbj0n77u/JyBpZD0nVzVNME1wQ2VoaUh6cmVTek
    5UY3prYzlkJz8+Cjw/YWRvYmUteGFwLWZpbHRlcnMgZXNjPSJDUkxGIj8+Cjx4OnhtcG1ldGEgeG1sbnM6eD0nYWRvYmU6bnM6bWV
    0YS8nIHg6eG1wdGs9J1hNUCB0b29sa2l0IDIuOS4xLTEzLCBmcmFtZXdvcmsgMS42Jz4KPHJkZjpSREYgeG1sbnM6cmRmPSdodHRw
    Oi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjJyB4bWxuczppWD0naHR0cDovL25zLmFkb2JlLmNvbS9pWC8xL
    jAvJz4KPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9J2U5MDg4NGEzLTNjOWEtMTFlMS0wMDAwLTY0MjYwMzNhYTUwJiM4OycgeG
    1sbnM6cGRmPSdodHRwOi8vbnMuYWRvYmUuY29tL3BkZi8xLjMvJz48cGRmOlByb2R1Y2VyPkdQTCBHaG9zdHNjcmlwdCA5LjA0PC9
    wZGY6UHJvZHVjZXI+CjxwZGY6S2V5d29yZHM+KCk8L3BkZjpLZXl3b3Jkcz4KPC9yZGY6RGVzY3JpcHRpb24+CjxyZGY6RGVzY3Jp
    cHRpb24gcmRmOmFib3V0PSdlOTA4ODRhMy0zYzlhLTExZTEtMDAwMC02NDI2MDMzYWE1MCYjODsnIHhtbG5zOnhtcD0naHR0cDovL
    25zLmFkb2JlLmNvbS94YXAvMS4wLyc+PHhtcDpNb2RpZnlEYXRlPjIwMTItMDEtMDlUMDg6MjU6NTQrMTE6MDA8L3htcDpNb2RpZn
    lEYXRlPgo8eG1wOkNyZWF0ZURhdGU+MjAxMi0wMS0wOVQwODoyNTo1NCsxMTowMDwveG1wOkNyZWF0ZURhdGU+Cjx4bXA6Q3JlYXR
    vclRvb2w+UERGQ3JlYXRvciBWZXJzaW9uIDEuMi4zPC94bXA6Q3JlYXRvclRvb2w+PC9yZGY6RGVzY3JpcHRpb24+CjxyZGY6RGVz
    Y3JpcHRpb24gcmRmOmFib3V0PSdlOTA4ODRhMy0zYzlhLTExZTEtMDAwMC02NDI2MDMzYWE1MCYjODsnIHhtbG5zOnhhcE1NPSdod
    HRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvbW0vJyB4YXBNTTpEb2N1bWVudElEPSd1dWlkOmU5MDg4NGEzLTNjOWEtMTFlMS0wMD
    AwLTY0MjYwMzNhYTUwJiMxMzg7pyYjMTU3O+7SYyYjMzE7JiMxNjsnLz4KPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9J2U5MDg
    4NGEzLTNjOWEtMTFlMS0wMDAwLTY0MjYwMzNhYTUwJiM4OycgeG1sbnM6ZGM9J2h0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8x
    LjEvJyBkYzpmb3JtYXQ9J2FwcGxpY2F0aW9uL3BkZic+PGRjOnRpdGxlPjxyZGY6QWx0PjxyZGY6bGkgeG1sOmxhbmc9J3gtZGVmY
    XVsdCc+Q0JDIFJlcG9ydCBmb3IgV2lsZS4gRS4gQ09ZT1RFIChNUk46IDIzNDUzKSBpc3N1ZWQgMy1NYXIgMjAxMSAxMTo0NTwvcm
    RmOmxpPjwvcmRmOkFsdD48L2RjOnRpdGxlPjxkYzpjcmVhdG9yPjxyZGY6U2VxPjxyZGY6bGk+R3JhaGFtZTwvcmRmOmxpPjwvcmR
    mOlNlcT48L2RjOmNyZWF0b3I+PGRjOmRlc2NyaXB0aW9uPjxyZGY6U2VxPjxyZGY6bGk+KCk8L3JkZjpsaT48L3JkZjpTZXE+PC9k
    YzpkZXNjcmlwdGlvbj48L3JkZjpEZXNjcmlwdGlvbj4KPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KICAgICAgICAgICAgICAgICAgI
    CAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgIC
    AgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAo8P3hwYWNrZXQgZW5kPSd3Jz8+CmVuZHN
    0cmVhbQplbmRvYmoKMiAwIG9iago8PC9Qcm9kdWNlcihHUEwgR2hvc3RzY3JpcHQgOS4wNCkKL0NyZWF0aW9uRGF0ZShEOjIwMTIw
    MTA5MDgyNTU0KzExJzAwJykKL01vZERhdGUoRDoyMDEyMDEwOTA4MjU1NCsxMScwMCcpCi9UaXRsZShcMzc2XDM3N1wwMDBDXDAwM
    EJcMDAwQ1wwMDAgXDAwMFJcMDAwZVwwMDBwXDAwMG9cMDAwclwwMDB0XDAwMCBcMDAwZlwwMDBvXDAwMHJcMDAwIFwwMDBXXDAwMG
    lcMDAwbFwwMDBlXDAwMC5cMDAwIFwwMDBFXDAwMC5cMDAwIFwwMDBDXDAwME9cMDAwWVwwMDBPXDAwMFRcMDAwRVwwMDAgXDAwMFw
    oXDAwME1cMDAwUlwwMDBOXDAwMDpcMDAwIFwwMDAyXDAwMDNcMDAwNFwwMDA1XDAwMDNcMDAwXClcMDAwIFwwMDBpXDAwMHNcMDAw
    c1wwMDB1XDAwMGVcMDAwZFwwMDAgXDAwMDNcMDAwLVwwMDBNXDAwMGFcMDAwclwwMDAgXDAwMDJcMDAwMFwwMDAxXDAwMDFcMDAwI
    FwwMDAxXDAwMDFcMDAwOlwwMDA0XDAwMDUpCi9DcmVhdG9yKFwzNzZcMzc3XDAwMFBcMDAwRFwwMDBGXDAwMENcMDAwclwwMDBlXD
    AwMGFcMDAwdFwwMDBvXDAwMHJcMDAwIFwwMDBWXDAwMGVcMDAwclwwMDBzXDAwMGlcMDAwb1wwMDBuXDAwMCBcMDAwMVwwMDAuXDA
    wMDJcMDAwLlwwMDAzKQovQXV0aG9yKFwzNzZcMzc3XDAwMEdcMDAwclwwMDBhXDAwMGhcMDAwYVwwMDBtXDAwMGUpCi9LZXl3b3Jk
    cygpCi9TdWJqZWN0KCk+PmVuZG9iagp4cmVmCjAgMjEKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAyMTM3IDAwMDAwIG4gCjAwM
    DAwNjg3OTMgMDAwMDAgbiAKMDAwMDAwMjA3OCAwMDAwMCBuIAowMDAwMDAxOTM2IDAwMDAwIG4gCjAwMDAwMDAwMTUgMDAwMDAgbi
    AKMDAwMDAwMTkxNiAwMDAwMCBuIAowMDAwMDAyNjU2IDAwMDAwIG4gCjAwMDAwMDQ2ODEgMDAwMDAgbiAKMDAwMDAwMzQ3OSAwMDA
    wMCBuIAowMDAwMDIxNTc3IDAwMDAwIG4gCjAwMDAwMDQzMjkgMDAwMDAgbiAKMDAwMDA0MTMwNyAwMDAwMCBuIAowMDAwMDAyMjAy
    IDAwMDAwIG4gCjAwMDAwMDQ5MDUgMDAwMDAgbiAKMDAwMDAyMTc5MyAwMDAwMCBuIAowMDAwMDQxNTI5IDAwMDAwIG4gCjAwMDAwM
    DIyNTIgMDAwMDAgbiAKMDAwMDAwMjk0OCAwMDAwMCBuIAowMDAwMDAzODMxIDAwMDAwIG4gCjAwMDAwNjcwODggMDAwMDAgbiAKdH
    JhaWxlcgo8PCAvU2l6ZSAyMSAvUm9vdCAxIDAgUiAvSW5mbyAyIDAgUgovSUQgWzw4RDdGNzc5QTAwQzcwOTc5NTg3MDQyRjA5MkJ
    BQjhDNj48OEQ3Rjc3OUEwMEM3MDk3OTU4NzA0MkYwOTJCQUI4QzY+XQo+PgpzdGFydHhyZWYKNjk0ODUKJSVFT0YK"/>
    <title value="HTML Report"/>
  </presentedForm>
</DiagnosticReport>

Usage note: every effort has been made to ensure that the examples are correct and useful, but they are not a normative part of the specification.